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1. Progress of Theoretical Work

In the AFOSR grant, the complex interaction between noise, stability
and nonlinear dynamics inherent in mechanical systems was examined
and a consistent method for analyzing stochastic nonlinear systems was
developed. This has led to a new qualitative understanding of the physical
phenomena encountered in nonlinear mechanical and structural systems
under harmonic and stochastic excitations. The mathematical techniques
developed under the current AFOSR grant will allow engineers and
scientists to predict possible motion instabilities in such systems as rotor
blade dynamics in forward flight in a region of high atmospheric
turbulence as well as rotating shafts subjected to harmonic, stochastic and
combined harmonic and stochastic excitations.

1.1 Nonlinear Deterministic Systems

Recently, considerable effort has been directed toward obtaining a
better understanding of nonlinear behavior and instability mechanisms of
rotating shafts, a fundamental component of many mechanical systems.
Toward this end, an analytical method based on both Hamiltonian and non-
Hamiltonian frameworks is being developed by the PI and one of his
graduate students. The case in which a harmonic axial excitation is
applied has been studied in detail by the PI and his graduate student {1]. It
was shown that in addition to the simple and Hopf bifurcations in the
presence of subharmonic and combination resonances, respectively, such
systems can exhibit a generalized Hopf bifurcation with 1:1 resonance
when the damping is very small. In connection to this, the effects of
periodic parametric excitations on systems exhibiting Hopf bifurcations
with 1:1 resonance are also being investigated [2, 3]. Both semisimple and
non-semisimple cases are of interest, and the normal forms are calculated
when the forcing frequency is near twice the natural frequency.
Furthermore, since symmetric properties are fundamental features of
many engineering systems, the PI is currently studying global bifurcations
with rotational and reflective symmetries, as well as the effects of
imperfections that destroy this symmetry.




The techniques developed under the current AFOSR grant can be
applied to a wide variety of realistic problems in nonlinear structural
dynamics. As mentioned above, the results have already been applied to
study the stability and bifurcation behavior of gyroscopic systems (i.e. the
rotating shaft) under combined harmonic and stochastic excitations and
the dynamics of rotor blades in forward flight. Further applications
include the analysis of propellant lines conveying pulsating (possibly
turbulent) fluid flow. The PI has introduced novel mathematical and
computational methods to study the nonlinear behavior of both gyroscopic
and nonconservative deterministic systems [4, 5]. Over the next few years,
the PI will develop both local and global techniques to investigate various co-
dimension two and three bifurcations under time periodic perturbations.
Special emphasis will be given to the study of global chaotic phenomena in
these systems.

1.2. Nonlinear Stochastic Systems

In many situations, parametric or external excitations cannot
always be adequately modelled by deterministic time functions alone. They
fluctuate randomly over a wide band of frequencies and have to be
considered as stochastic functions of time defined only in probabilistic
terms. Since the effects of stochastic perturbations are of greatest
importance near bifurcation points in any dynamical system, a portion of
this research focuses on noise induced transitions near such points. The
results obtained have great impact on such engineering problems as
aircraft at high angles of attack [6], panels under gas flow with both
turbulent boundary layers and random axial loads [7,8], rotating systems
under pulsating axial loads [9] and propellant lines conveying turbulent
fluid flow [10].

The PI has developed a method called "stochastic normal forms”
which replaces the original nonlinear system by an "equivalent" (in the
stochastic sense) system of lower dimension [11,12]. A consistent method
for analyzing stochastic nonlinear systems has been developed through this
investigation. These new techniques [13, 14, 15, 16], based on the concept of
Lyapunov exponents and multiplicative ergodic theory, provide insight into
the effects of harmonic and stochastic excitations on the response of

4




nonlinear dynamical systems. Stability boundaries and bifurcation
scenarios are then determined for such systems as helicopter rotor blades
in forward flight [17, 18] and rotating shafts subjected to combined
harmonic and stochastic excitations [9]. Results obtained in this study
explain how small amplitude periodic or stochastic fluctuations in the
parameters of a system or its environment can have a marked effect on the
dynamics of physically realistic nonlinear systems. The current research
has led to fundamental contributions in understanding co-dimension two
stochastic bifurcations such as the interaction of Hopf and pitchfork
bifurcations under stochastic excitations [19, 20].

In the prior AFOSR support, the results were obtained for white or
nearly white noise cases. These assumptions, however, are idealistic. The
PI is currently examining the the cases of realistic colored noise and
simultaneous harmonic and stochastic excitations which are often
encountered in nonlinear mechanical and structural systems.

2, Progress of Experimental Work

The objective of the experimental research is the development of
laboratory facilities to conduct a series of tests designed to verify the
analytical results obtained by the PI under his current AFOSR grant and
oti er previous support.

2.1 Mechanical Problem

One of the most fundamental components of a mechanical system is
a rotating shaft. It is, therefore, not surprising that through the years
considerable effort has been directed toward obtaining a better
understanding of such mechanisms. The dynamics and response of
rotating and gyroscopic systems have been studied extensively in the
literature. The equations describing the transverse motion of a continuous
uniform elastic shaft of asymmetrical cross-section mounted in a rigid
bearing and rotating with angular velocity Q(t) about the horizontal center

line of the bearings are
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where P(t) may be harmonic, stochastic or a combination of both. The shaft
is of length L, mass per unit length m, and flexural rigidities EI, and EI,
parallel to directions Ou and Ov, respectively. The terms f;(u,v), i=1,2,
consist of all nonlinearities due to nonlinear strain-displacement relations
and the nonlinear damping model. In addition, fi(u,v) may also contain the
etfects of mass imbalance and bearing forces, including impacts.

2.2 Proposed Experimental Investigation of the Rotating Shaft

One of the main objectives of the proposed research is to conduct a
series of experiments on a rotating shaft. An important application of this
work is the study of aircraft gas turbine engines. Both rotor imbalance and
impact due to bearing clearance are inherent in such systems. Thus, the
experimental set-up will consist of an elastic shaft supported by bearings
with clearance to depict realistic operating conditions in a turbine engine.
This clearance is modelled by a bilinear spring. It is intended to measure
the time response of a rotating shaft under two separate operating
conditions. Specifically, the transverse vibrations will be monitored as the
shaft is subjected to (1) time varying axial thrust at various constant
rotation rates and (2) various static axial loads with time-dependent
angular velocity.

The experimental problem can be divided into three categories:
design and construction of the shaft and test rig, integration of the shaker
(external excitation) and motor (rotation), and implementation of sensors
and time series analysis. Detailed descriptions of each of these components
are given in the following four subsections.

2.2.1 Design of Shaft and Test Rig

The shaft to be studied will be constructed from hard naval brass.
The published material properties of hardened yellow brass are shown in




Table 1 along with the shaft characteristics of interest. The shaft has a
clamped length of L = 25.1 in. and a diameter of d = 0.25 in.

As shown in Table 1, the critical static buckling load of the shaft is
P, = 190 Ibf and the natural angular frequency is f;, = 50 Hz. Assuming a

safety factor of 1.5 (Gpyax = Oyielg/1.5), the maximum allowable strain will be
Emax = 2500 pin/in which corresponds to a centerline deflection of @ = 0.3 in.

Table I: Physical Characteristics of Shaft

Shaft Property Characteristic Value
Material hard naval brass
E 15.9 x 106 psi
H 7.92 x 104 ]bf-s2/int
Sy 60 ksi
L 25.1in
d 0.251in
f, 50 Hz
Per 191 Ibf
®Cmax 0.3in
Emax 2500 pin/in
(AX)max 0.018in

The bearing assemblies are designed to closely approximate
clamped-clamped boundary conditions. With the use of super-nrecision
bearings, the maximum angular deflection of the shaft at the bearings is
calculated to be 0.013 degrees. Thus, for the first 0.013 degrees of deflection
at the bearings, the model behaves as if it is a pinned-pinned shaft.
Assuming pinned-pinned boundary conditions, the maximum center line
deflection corresponding to this angular deflection at the ends can be
calculated to be 0.002 inches. This deflection corresponds to a strain gage
reading of approximately 1.9 pin/in which is negligible. Thus, we can
assume clamped-clamped boundary conditions throughout,

The brass shaft is held in the motor end bearing hub using a slit
clamp and bolts and four set screws. The large steel bearing blocks and




large thrust bearing take the full load transmitted by the shaft. The bearing
hub has eight port holes tapped through it to allow for passage of the strain
gage leads from the shaft to the slip ring, which is mounted on the bearing
hub. The bearing hub is then passed through a radial bearing and coupled
to the flywheel and drive motor. Also mounted on the bearing hub is a
timing belt pulley used to drive the auxiliary shaft. The auxiliary shaft and
timing belts are used to synchronize the rotation rate of the shaker end
bearing hub with that of the shaft to minimize torque in the experimental
model. Therefore, the shaft will experience only axial movement with
respect to the linear/rotary bearings, insuring that they do not bind.

The shaker-end bearing hub is mounted in two bearings, one of
which is a thrust bearing used to provide increased axial rigidity. Three
0.375 inch linear/rotary bearings are mounted inside the bearing hub to
allow axial movement of the shaft. The hardened stainless steel sleeve on
which the linear/rotary bearings act is attached to the shaft using a shrink
fit. The sleeve acts as the inner race for the ball bearings and also
increases the stiffness of the shaft through the bearing.

A small thrust bearing is used to transmit the axial loading to the
rotating shaft. A load cell is mounted on the thrust bearing to measure the
static and dynamic axial loads which are to be applied. Mounted directly
above the load cell is a cross bar which transmits the static and dynamic
axial loading to the shaft. The static load is applied using two small
rneumatic air cylinders which are pressurized with a one gallon air tank.
An air tank pressure of 100 psia will apply a static load of 260 !bf. The
dynamic axial load is applied to the shaft using a 100 1bf shaker, which acts
through the center of the cross Lar.

2.2.2 Integration of Motor and Shaker

The motor currently under consideration for these experiments is the
MTS 1000-Watt pulse-width modulated servo motor and controller. This
motor/controller system provides high performance, high accuracy
operation necessary for the proposed experimental project. In the case of a
constant rotation rate, i.e. Q(t)=Q,, such a high torque motor is not
necessary. However, in the second phase of the proposed experimental
program, the parametric excitation is given in the form of a time dependent




rotation ra. , i.e. Q(t) = Qo + Q;(t). The high torque required to insure
precise control of the time-varying component of this excitation necessitates
a high performance motor.

The dynamic axial loading applied to the shaft is generated by a
Bruel & Kjaer 445 N (100 1bf) shaker mounted as shown in Figures 3 and 5.
The shaker is used to apply only the dynamic load since use of this system
to apply static loads may cause the shaker to overheat. The Bruel & Kjaer
shaker system was chosen since it provides the most precise frequency
command following which is essential in these experiments. The
command signal is generated by a Tektronix 2630 FFT Analyzer/Signal
Generator. This signal generator is capable of producing dc, periodic,
random or any combinaticn of these waveforms.

The amplitude of the static load and the amplitude and frequency of
the dynamic load will be measured by a 200 1bf S-type load cell mounted on
the thrust bearing at the shaker end of the shaft. The signal from the load
cell is passed through a Wagner model #460 Signal Conditioner/Amplifier.
Currently, the shaker system is run open-loop; the signal from the
amplifier is input to the Tektronix 2630 analyzer where it can be compared
to the reference input. In this configuration, no corrective action is taken if
the excitation amplitude does not correspond exactly to the desired
waveform (for periodic inputs) or to the desired spectrum (for random
inputs).

2.2.3 Data Acquisition and Time Series Analysis

A schematic diagram of the experimental set-up is given in Figure 9.
The deflection of the shaft in the principle directions, i.e. the rotating u- and
v-coordinates, will be measured by strain gages. A total of four foil gages
are mounted on the shaft, one every 90°, and arranged in two half-bridge
configurations. The strain gage signals are passed through the Fabricast
model #1401001 slip ring to a Measurements Group #2311 Signal
Conditioning Amplifier. The conditioned signals are then input to the
Tektronix analyzer. The analyzer, run from a Gateway 486 PC,
implements the following standard signal analysis functions:




time domain waveform and orbit (x - y) plots;

averaged power spectral density and cross spectral density functions;
transfer (frequency response) function and FFT;

coherence function;

waveform averaging;

auto- and cross-correlation;

® & & & ¢ o o

impulse response function;

These standard functions are indeed the most frequently applied
techniques for understanding experimental data. Such analysis is useful
for obtaining the frequency components and power distribution as a
function of frequency. However, in order to gain a detailed description of
the nonlinear dynamics, it is imperative to utilize nonstandard time series
analysis. Lyapunov exponents, wavelet transforms and fractal dimensions
are examples of such nonstandard techniques.

3. Current Research

3.1 Specific Objectives

The specific objective of the current work is to examine, both
theoretically and experimentally, the nonlinear response of gyroscopic
systems under stochastic and harmonic excitation. This study will include
the following:

¢ examination of the combined effects of mass imbalance, asymmetry
and realistic boundary conditions on the nonlinear response of
rotating systems;

¢ development of a nonlinear control technique designed to suppress
unwanted vibrations and chaotic motions in gyroscopic systems;

¢ experimental verification of the theories developed.

The current research will investigate the effects of both parametric
and internal resonances on the local and global dynamics of realistic
gyroscopic systems. In most realistic cases, the mechanical system is
subject to stochastic as well as deterministic excitations. The stability
boundaries for such cases must alsc be obtained. Toward this end, the Pl
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and his graduate students are extending the techniques developed in the
study of stochastic dynamical systems by removing some of the restrictive
conditions. The goal of this effort is the development of a systematic
approach to nonlinear stochastic problems. The results obtained will
identify the mechanisms which give rise to instability and unwanted
vibrations under complex loading conditions. In addition to understanding
the mechanisms of instability, it is beneficial tc be able to suppress
unwanted component oscillations. A general approximate nonlinear
control methodology designed to suppress undesired motions in
mechanical system such as the rotating shaft is also under development as
part of the current research. In the above-mentioned studies, benchmark
experiments are necessary to validate the current theories for the limited
classes of systems to which they apply and to guide the development of more
general theories in the areas of nonlinear dynamics and control.

32 Scope of the Current Theoretical Work

The research in the previous AFOSR grant has produced important
analytical results for lower dimensional systems. However, little analysis
and few results a.c available for large realistic multidegree-of-freedom
(n>4) mechanical systems due to their complexity. Furthermore, it is
imperative that experimental results be provided for comparison to the
theoretical models. This project addresses both the analytical and
experimental aspects of the PI's current and planned research.

In the course of the current study, several questions, which have
hitherto not been studied globally, will be addressed:

¢ What are the effects of mass imbalance, asymmetry and motion

constraints on the nonlinear response of gyroscopic systems?
¢ What are the mechanisms of global bifurcations in such systems?
Why is noise beneficial in some nonlinear systems but harmful in

others?
¢ What additional effects are caused by the presence of harmonic

excitation?
¢ What is the effect of noise on the stable and unstable periodic
motions?

11




Answers to these questions will deepen our understanding of the dynamics
of mechanical systems in real life situations and will aid in the design of
more efficient dynamical systems.

The PI's current research is also concerned with the development of
& general control algorithm for nonlinear multidegree-of-freedom
mechanical systems. A variety of power generating components become
unstable due to parametric excitations which may lead te catastrophic
failures. Thus, it is important to study the inc.ability mechanisms in detaii
and to control undesirable component motions. This work will result in a
systematic method of suppressing unwanted vibrations and chaotic
motions in rotating shafts subjected to motion constraints. The nonlinear
control designs will then be implemented in the laboratory.

33  Scope of the Current Experimental Work

At this stage of our investigation, it is imperative to verify the
theoretical results of the ongoing AFOSR grant through a series of
experiments. To this end, the PI will conduct experiments with models
whose essential dynamics correspond to the class of systems for which the
theory was developed. These experiments are intended to validate the new
theories and/or to identify the essence of physical phenomena that must be
modelled.

Unlike the area of deterministic dynamics, there are very few
experimental studies on nonlinear stochastic dynamics available for
comparison. Therefore, the current experimental work will be valuable in
providing insight into the stochastic dynamics of actual mechanical
systems and in bridging the gap between the existing theoretical analysis
and physical observation.

The numerical and analytical results will be compared with the
follo .-ing estimated results obtained from the experiments:

¢ mean squares and power spectra of responses;

¢ auto- and cross-correlation of the response coordinates;
¢ probability density functions of the responses;

¢ Lyapunov exponents and fractal dimensions.
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The experiments will, in turn, guide the developments and
refinements of the theories developed to incorporate any new phenomena
observed. In addition, there is a primary need to increase the experimental
skills of dynamics and control graduate students and the current program
will establish a modern dynamics and control laboratory at the graduate
level.
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1. INTRODUCTION

When a multidegree-of-freedom dynamical system undergoes a bifurcation, it
usually does so in only a few degrees of freedom. One simple example is the buckling
of a column. If u and ¢ represent the axial and Euler loads of a column, respectively,
then, as p is varied in the vicinity of y., the temporal evolution of the motion is
dominated by the critical mode which, in the first approximation, is governed by
X =(1-H)x+ ax3. A more complicated situation arises when several control
parameters p are varied in such a way that several modes become marginally
unstable simultaneously. In the latter case, the system is said to undergo a multiple
bifurcation. The simplest and smallest number of equations which capture the
essential dynamics of the original system in the vicinity of e are said to be in the
normal form. The theory of normal forms is an important analytical tool for
investigating the qualitative behavior of nonlinear dynamical systems.

The idea of normal forms for nonlinear systems dates back as far as Euler;
however, Poincare [16] and Birkhoff [3] were the first to bring forth the theory in a
more definite form. Poincare [16] considered the problem of reducing a system of

nonlinear differential equations to a system of linear ones; namely,

dx _ 5_1_)12 n n
x Ax + f&@) ® 3t Ay, xe R, yeR". (1)

The formal solution of this problem entails finding near-identity coordinate
transformations, x = y + ®(y), which eliminate the analytic expressions of the
nonlinear terms. It has been shown that such a formal solution exists provided the

above system is hyperbolic and the eigenvalues A; of the diagonalizable matrix A

satisfy the nonresonance condition

A+ Z m;A; fori=12,.,n, |m| =Zm, 22 @)




where 1. 18 a vector of integers m = (m;, mg2,.., mp) with m;20. Furthermore, it
was proven that if, in addition to the above results, the eigenvalues lie strictly to one
side of a line separating them from zero in the complex plane, then the formal series
&(y) is convergent.

If the system is nonhyperbolic or condition (2) is violated, the analytic
expressions of the nonlinear terms cannot be completely eliminated via a nonlinear
change of coordinates. The remaining terms comprise the normal form of the system
of equations given by (1). The normal form is dictated by the nature of the linear
operator A. Thus, the nonlinear system in Eq. (1) can be reduced to

d
E%=AY+3(Y),YERD (3)

where g is simpler than f. Such reductions have been widely used to study
deterministic autonomous and nonautonomous systems (see Arnold {1]).

In bifurcation problems, the eigenvalues of the linear operator A are composed
of two sets, one on the imaginary axis and the other with strictly negative real parts.
The linear vector space E associated with A can also be divided accordingly as
E=E.® Eysuch thatx e E_andx, € E withx =x_+ x,, There are two approaches
to obtaining normal forms for deterministic systems. In the first, as shown in
Guckenheimer and Holmes [12), one first computes the lower dimensional center
manifold onto which the dynamics settle for large times. The dynamical system
defined on the center manifold is then transformed to the normal form through a
nonlinear change of coordinates. In the second method, one systematically expands
the original vector field in powers of amplitudes of the critical modes to yield both the
normal form and center manifold, simultaneously, as shown by Elphick et al. {7]. The
approach adopted in this paper for the computation of the normal form assumes that
the center manifold theorem has been applied to the original system and is based
heavily on the work of Elphick et al. [7).
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The aim of this paper is two-fold: first, to present an explicit formula for the
normal form of a generalized Hopf bifurcation with non-semisimple 1:1 resonance
and, second, to compare the results with those obtained via the method of averaging.
The results for the corresponding semisimple case were obtained by Bajaj and Sethna
{2] using center manifold theory and the method of integral averaging.

Recently, the normal form for a generalized Hopf bifurcation was expressed as
a 4-dimensional real system by Cushman and Sanders (5] and as a 2-dimensional
complex system by Elphick et al. [7] and Iooss and Adelmeyer [18]. Iooss et al. [19]
employed the 2-dimensional normal form given in (7] to examine the steady
bifurcating solutions in nonlinear hydrodynamic stability problems. However, there
are no explicit formulas relating the coefficients of the original system to those of the
normal form. This paper presents explicit formulas for the 4 leading constants in the
complex normal form in terms of coefficients of the original nonlinear system w :th
both quadratic and cubic nonlinearities. The complex normal form presented by
Elphick et al. [7] has recently been analyzed by van Gils et al. [11]. It was shown
that this co-dimension 3 bifurcation problem is more complicated than the closely
related case of the non-resonant double Hopf bifurcation and contains three different
types of co-dimension 1 singularities and 4 different types of co-dimension 2
singularities. Thus, with the help of the results presented in this paper, one can apply
the analysis of van Gils et al. [11] to any physical problem exhibiting generalized Hopf
bifurcation with non-semisimple 1:1 resonance. Furthermore, it has been shown by
Hale (13] that, for systams with linear operators whose superdiagonal terms are
equal to 1, an appropriate scaling can be used to obtain the averaged equations. In
the final section, the averaged equations up to the second order approximation are

obtained and compared with the normal form equations.




I1. BACKGROUND AND NOTATIONS
The problem of interest in this paper is a 4-dimensional one. However, we shall
keep the analysis as general as possible for the time being. Consider a dynamical

system governed by autonomous differential equations in C»,

y=AWy+ fo, 1w 4)
where f: Cth —» Cnis a Cr vector field, r 2 2, A is an nxn complex matrix, x=0 is the
trivial solution of Eq. (4) for all values of i (i.e., {0, p) = 0) and the nonlinear vector

function can be represented as

£a) = £p) + L Fop+- . 5)
Here, we have expressed the nonlinear terms as a formal power series of
homogeneous terms with degree denoted by the superscripts. We define H X to be the
linear space of homogeneous vector polynomials of degree k in n variables with range
Cn. Let (e;, e, ..., &) denote the basis of C" and y=(y1,yz2---y) be the
coordinates with respect to this basis. Thus, an element f*(y,u)of HX can be

represented in the form of vector-valued monomials as

Eiyn) = 2 i (yn)es = ;ﬂ Bm()yme , Im| =k

= Z Z f}munz..m. lxnl Y;’Z"')ﬁ"‘) ey
' mi=k 6)

with dim {ff (v,11)} = (0+k-1)! / [@-1)! k1] and dim {HX} =n - dim {ff(y,1)}. Now that a
formal set-up for representing Eq. (4) has been obtained, we can consider the problem
of reducing Eq. (4) to the normal form

T=AWx+ gk, gaW=g2ExW+gdam+.-gkxpm+.. N




which, as stated previously, is in a simpler form than Eq. (4) and has all the essential
features of the flow near the equilibrium point of the original system. The formal
golution of this problem consists of determining near identity coordinate

transformations

y=x+h®, h@= h2@+h®@+...h* (8)
where x € ©Q, and Q is a neighborhood of the origin of C2, such that the analytic
expressions of fly,u) are simplified to yield g(x,u). Once again, f* gkand h*are
homogeneous vector polynomials of degree k and belong to H ,‘,‘ . Assuming the normal
form reduction up to order k-1 has been performed, differentiating Eq. (8) gives

y = (I + D;hk@)x
and substituting in Eq. (4) yields

X = [I + D‘hk(x)]vl[A(x+hk(x)) + f‘x+hk(x))].
Making use of the fact that, for x e Q,

1+ D,h*@)]" = 1-D,h* @) + O{IxP*?)

results in

i = Ax+ P+ B+ £
+ | + [an*@) - D% Ax]) + ofjx?). @)
It is worth noting that the transformation of degree k does not affect the normal form
of order (k-1) but does affect the terms of order k and higher. The task now is to
select hk(x) so that the terms of degree k in the brackets are as simple as possible.
Examining the terms of degree k in Eq. (9) and comparing with those of Eq. (8) yields

Ah*@) - D h* @) Ax + &) = g"x) (10)




and f'(x) = gi(x) for j =2,3,-.- k-1 Introducing a linear operator L defined by

L,h* = [h¥, Ax] = An* ) - DA* &) Ax.
Eq. 10 can be rewritten as

- Lyah* @) =@ -g* @) = nf ). (11)
The above equation is called a homological equation. Ly, : H: - Hﬁis called the
homological operator and is linear in the space ¢. homogeneous vector polynomials of
degree k. Equation (11) is to be solved for hk (x).
Let us denote R: as the range of La and let W: be any complementary
subspace to R: in H,‘{ . H: can be decomposed as follows

H =Reoe W 6 k22 (12)
Thus, for each fx) € H: there exists n*(x) R:and gkx) e W- such that any

n

given homogeneous polynomial of degree k can be written as

fx) = gx) + n*X)
and the suitable transformation hk(x) is obtained from

-Ly,h*m) = n*m). (13)
Since the choice of complementary space W],: is not unique, neither is the

transformation hk(x) or the normal form gk(x). This nonuniqueness was resolved hy
Elphick et al. [7] through a particular choice of inner product. As in [7] (refer also to
Helgason [14)), we can introduce an inner product in H : . To this end, we introduce a

differential operator associated with an arbitrary f: x)e H: as




m m my my m,
ij-‘ dje = fk (—?—) e , (-—a-) = d . d J .
x( ) A lm%k im Ix i . a'x;nl ax:' axnm‘

Then, for tf x), 8;(!) in H:, the scalar product is given by

(if(x), g}‘(x)) = ff(a) —g-j(

Z P 3°xh

=0 U ok Aok w 558 P ’ v
X=0

It is clear that the only terms that will survive are those for which « and B coincide,

ie.

(f?(x), g}‘(x)) = ttm'g'tm m!d;, m!=m,!my. m}/!.
mak

Thus, the inner productinH,lf is defined as
(o), g"(x)> Z Y £ im Bim ! .
H, =]l Imj=k (14)

Using this inner product, we can define the adjoint operator (L)’ as

(Lab*en, fa), = b @), Laf ),

and making use of the fact

A , ), = ), a"0),,
Elphick et al. [7] has shown that

ker (L) = ker (L,) . (15)
Since H: is a finite dimensional space, ker (L)’ is an orthogonal complement of R:

the elements of whxch we are free to choose. Equation (12) may then be written as

k
Hn R‘n ® ker (LA) (18)

Now, considering the linear equations in H ,‘i, we have




-Labh*(@) = @ , Lygkx) =0 (17)

and the solvability condition

(@ , g @)y = 0. (18)

The normal form and explicit formulas for the coefficients can then be calculated
using Eqs. (17) and (18). It is important to note that this normal form depends on the
matrix A and the choice of cqmplementary space W: Once the functions f¥(x) are
known, the above method can be applied to calculate both hX(x) and gk(x). A recursive
algorithm, similar to that of Chow and Hale [4], can also be employed to compute the
kth order nonlinearities f¥(xz) given all transformations h(x) and normal forms g(x) up
to order k-1. Both methods have been employed independently herein to calculate the
normal form coefficients which are given explicitly in the Appendix.

III. NOoRMAL FORM FOR NON.SEMISIMPLE CASE

For the non-semisimple case, the normal form calculations are not as easy as
in the case of a diagonalizable linear operator. However, the calculations can be
simplified using certain well known results in Lie algebra. These will be introduced as
we proceed through the calculations of the normal form for the generalized Hopf
bifurcation.

Given a finite dimensional vector space V over the complex numbers C and a
space L of linear transformations of V onto itself, one can define the Lie bracket by
the formula

[P,Q) =(P°Q-Q*P) e L for P,Qe L. (19)




Then L becomes a Lie algebra and we say P commutes with Q iff [P,Q] = 0. The

result that is of importance to us is the Jordan decomposition theorem which states
that for any A € L there exist S and N such that

A=S+N and [SN]=0 (20)
where S is semisimple (diagonalizable) and N is nilpotent. Moreover, these

decompositions are unique and

ker A = kerS N kerN. (21)
In the calculation of normal forms for generalized Hopf bifurcation with non-

semisimple 1:1 resonance, the linear operator of interest takes the form

i 1 0 io 0 0 8(1)0

A= = + =S+N
40 1 i 0 01 22)
0 o e 0 o o % o0 (

and [S,N] = 0. In addition, the homological operator for any two matrices A and B
also satisfies the relation [La, Lg] = I{a,3. This implies that the Lie brackets of Lg,
LN and Lge*, LNs also commute. Thus, the ker(La+), which is needed for the
calculation of the normal form, is given by

ker (L,.) = ker Ly M ker Ly..
It is worth pointing out that the above results can also be obtained using the
arguments given in Meyer [15). Furthermore, the normal form g(z), given in Eq. (17),

commutes with elements of the Lie groups

G = {e"”lse R} and §' ={e'slse R}
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and the normal form is said to have G - equivariance and a simpler S1 -equivariance,
respectively. Since the proofs of these results are similar, only that of S!-

equivariance, i.e.

glerStE) = eSg(®
will be given here. To this end, consider z = eS¢ and g(2) = g (e's §)- Taking the
total differential of g(z) w.r.t. the variable s yields

dg (z) _
45 D,g(z)Se.

Now, using the fact that the normal form is such that g € ker (Las+) = ker(Lg+) N
ker(LN+) and S* = - S, we have

D,g(z) & - S5¢(2) = 0.
Combining the above two equations yields an O.D.E for g (z)

d%zl =Sg@@, seR

whose solution can be written as

g@@ = e'sg (z;8=0) = e’sg ® . (23)
This proves the St - equivariance. The G - equivariance can be proven similarly by

replacing S by A* in the above steps.

1. Linear Algebraic Calculation of the Normal Form Coefficients
Now we calculate the normal form and appropriate expressions for the
coefficients of this normal form. To this end, consider the homological equation
-Lab* @) = ).
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It is easy to show that for the semisimple S with eigenvalues

Ai, i=1,2---n, LAh¥x) reduces to

Lsh*@ = ¥ him [, 3) - AJxme,

" simi=k
and
m,A) - A=0;8=12,-.-,n; |m| 22
is called the resonance condition. The ker (Ls+) is determined by the appropriate
combination of m's which satisfy the above condition. The resonance condition for the

problem under consideration can be expressed as

io(m;+mg-m3-my-1) =0, mi+meo+mg+my =k fors=12
and

-io{mg+m,-m;-m,-) =0, m+my+mg+m, =k fors=34.
Since m; 2 0 and integer, it is obvious that k is always odd and the above conditions
yield

(m1+m2)=k'§-l, (m3+m4)=l£é—1 fors=1,2

and

(m1+m2)=k—é—l, (m3+m4)=k—‘5—1 fors=34.

Thus, the non-zero nonlinear normal form exists only for k = 3,5... . However, the
original quadratic nonlinear terms can contribute to the cubic terms as a result of the
nonlinear transformation as will be seen in the subsequent section. Calculation of the
coefficients of the leading order normal form (k=3) is of concern in this paper. Thus, in
an 80 dimensional basis, only 24 vectors lie in the ker (Lg+) and can be written as

(x2x3) e, , (x1X2x3) €5, (x3x3) &y , (x2x4)es, (x1x2X4)es, (x2x4)e, fors=1,2
(xgxl)e,,(xax‘xl)e.,(xfxl) e,, (xgxz)e,, (xgx x5)e,, (xfxz)e. fors =34.
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The action of LN+ on these bases can be represented by a 24x24 matrix of the

form i _
010110

CO 00 002010

IC 00 _loooooo

00 co|¥"C=1000010

00 -IC 000002
000000

where I and 0 are 6x6 identity and zero matrices. The 8-dimensional null space of the
above matrix can be easily computed. Making use of this, the basis of ker (L+) can

be written as
31223 x12X3
X (X1X4 - X9x3) \ 2 2
X2 (XX 4 - XoX3) ’ X) X4 ’ X1X2X3 ’ J X,"x3 }
0 0 o | 0
0
0 0 0
0
0 0 0
0 0 0 0
X3 (XXg-X,X,) [’ x2x ’ 2x ’ 0
X (x5X3-X:x,) 32 ! 3 x2
Xg Xy XgX, X, | s X1 /

It is worth noting that the first 4 basis vectors are complex conjugates of the last 4,
as expected. Since any linear combination of these vectors spans the null space, we
can manipulate the given basis such that the resulting normal form is as simple as
possible. This manipulation is performed as follows: the second basis element is
replaced by the vector obtained by subtracting the third basis element from the
second and the sixth basis element is replaced by the vector obtained by subtracting
the seventh basis element from the sixth. This procedure yields the new 20d and 6th

bases as
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0 0

X, (XX, - XX3) 0
0 and 0
0 X3 (XpX3 - X1Xy)

Thus, the normal form for the generalized Hopf bifurcation with 1:1 resonance can be

written as

( ) (1(()012) (22)4- {ay(z171) + axz172 - Z122)) ( )+ {by(z1Z1 +bA21Z, - 2122))( )
(24)
where aj = ¢j + idj, bj=e+ifj, j=12. In the above equation, we have
replaced (X1, X2, X3, X4) by (23, 22, Z1, Z2). Thus, the second and third equations can
be obtained by conjugating the above equations.
While calculating the coefficients, we shall assume that the original system

contains both quadratic and cubic nonlinearities. Thus, for the problem under

consideration in this paper
£ = El 2 Eonymgmeme 7 2 V3 Ve Y es, dim (HY) = 4 (250)
= m

4
PO=Y T Lo mmem V152559 e dim(H) = 0. (op)

s=] |m|=3
We have shown in the previous section that ker (Las) = (&} for k = 2 since
ker(Lg+)=(@). Thus, all the quadratic terms given by expression (25a) can be
eliminated and the transformation which performs this reduction, obtained by the
matrix representation of ker(Las), is given by
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) hin| [ 8m |
Brool| = o
0Boo||bim| | fm
00BI||nE, fSm
L0 0 0 Bl
_hi;m‘_ - ﬁ,lﬂ N
where N _
io 0 0 0 0 0 0 0 0 0
2 i 0 0 0 0 0 0 0 0
0 -1 406 0 0 0 0 0 0 0
0 0 0 i@ 0 0 0 0 0 0
B_| 0 0 0 -1 i® 0 0 0 0 0
0 0 0 O 0 3w 0 0 0 0
0 0 0 -1 0 0 i@ 0 0 0
0 0 0 0 -1 0 -1 im 0 O
0 0 0 0 0 -2 0 0 3w 0
L. o 0 0 0 0 0 0 0 -1 3ia.

and hiy and iﬁm are vectors of dimension 10. Since B is nonsingular, it is easy to

calculate

him = B'm, him-= B'l(g;rn‘h%n)
and h%;m and hf;m are the conjugates of hi‘{;m and h%;m , respectively. The
complete expressions for h%;m and h%;m , are given explicitly in the Appendix. As
these transformations annihilate all of the quadratic nonlinearities in the given
system, they alter the terms of order 3 and above. We denote the new coefficients of

the cubic nonlinearities as

pfm = ﬂm + ?3::1 and fm = F(f.::n’ ém’ ifl;m’ ém)
where f‘:’;m are the original coefficients of the cubic nonlinearities, and i?m are the
coefficients of the new cubic terms generated while eliminating the original quadratic
nonlinearities. The coefficients are indeed functions of the coefficients of the original
quadratic nonlinearities as one would expect. Now, the normal form for the leading
nonlinearity is given by Eq. (23) and is defined in the space complementary to Ri_.
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The coefficients a;, as, by, bz and their conjugates are calculated using the

solvability condition of Eq. (18). The first 4 coefficients are

a = i‘ {3 2010 + 110 + fg;zool}+ )

ag = ‘;‘ ( 232001 - A3.0210 - f110 + f;;um) +ap

by = f32010 + b1

by = -} (fg;zow - 110 + 31’3;2001) +by

where the expressions for aj, ay, Sland B} in terms of the coefficients of the
quadratic nonlinearities are given in the Appendix. The remaining four coefficients
are obtained by conjugation of the above expressions, i.e.,

ag=a;,a4 =82, b3=b; and by=bs.

2. Recursive Calculation of Normal Form Coefficients
This approach is based on a series of papers by Ponce, Gamero and Freire 8,
9, 10, 17] which are, in turn, implementations of a method of Chow and Hale (4, Chap.
12] which employs a technique developed by Deprit {6] using Lie transforms to
determine the normal form.
In order to remain consistent with the literature, the following notation will be
used: define ¥, Uk, Gk < H. by

Fr=(k-0 Xy, U'=(k-1)h¥x), G*=(k-Ngkx).

The first step is a rescaling to isolate the homogeneous terms of degree k. Letting
x—ex and y—ey for € € R, the original system of Eq. (4) becomes
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y=Ay+
yave 5P

(26)
the near identity transformation, (8), becomes
k
y==x-+ "
52 (k n! @n
and the system in normal form, (7), becomes
x=Ax+
ka2 (k' b (28)

Following Chow and Hale [4], the sequence {F]k) is defined by the recursion

relation
kd+2

Fi=Fj+ 2( )F{‘I”" . i=2..k, k=3..
f (29)

where Fy =F*, F} = Ax and
PxQ-—- Q- Q

It can be shown (see Chow and Hale [4]) that
Ff=ﬂ?k.

This recursion can be represented by a Lie triangle,

(=]

(#3) [F3

(/) 7 [F]

(/) 7 F [Fi]

(/) 7% F F (R

(3) i i e (3
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The terms in round brackets are from the original system and those in square
brackets are the final normal form. Each term in the triangle depends on those
immediately to the left and above. The indexing scheme used here is different from
that in the above references; the superscript k refers to both the order of the
monomials in the vector and the row in which it appears in the Lie triangle and the
subscript refers to the column in which it appears in the Lie triangle.

The recursion operates across rows of the Lie triangle from left to right. Asan
example of what occurs during a recursion, consider the fifth row. Ff is a vector
containing the order 5 terms in the original system. To generate Fg , Ff is added to the
sum of the terms in column 1 above F15 combined with the appropriate U J's;
F: X U2, F;’ X Us, fo U‘, F; x U°. To generate Fg, Fg is added to the sum of the
terms in column 2 above Fg combined with the appropriate U i's;
F; X Uz, Fg xU® , F§ x U*. This process is continued until Fg is reached at which
time the normal form has been obtained. What is happening as the recursion moves
across the Lie triangle is the accumulation of the order 5 contributions of the near
identity transformations of orders 2 to 5. In column 2, the contributions from
substituting the transformations into the original equations are collected. In
succeeding columns, the contributions from the interaction of new terms generated

by the transformation and the subsequent transformations are collected until finally
k-l
in column 5 one has the order 5 terms of the normal form. The coefficient (j -2 j which

appears in the sum is a counting term analogous to the binomial coefficient in the
binomial theorem.
Now rewrite Eq. (11) using the new notation
LU =F*.G"
where f’k is a vector of the order k monomials resulting from the near identity

transformations up to order k-1. If Eq. (11) is rewritten as
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=G*-LU"
then
Projyer, = G* (30)
and
projghF =-L,U" 31)

However, if (11) is written as

G =F + LU
and it is noted t.hatF'l1 x U* =(Ax) x vk= LAUk, then
G*=F*+F! x U*.
Now consider the recursion (29). The only time U ¥ will appear is when [ = 2, in
which case (29) can be written

F;=F:+ 2(k 2‘1“" il +leU
)s

~k
Fr=F,+ F}xU".
For [ = 3, Eq. (29) can be written

k-1
~k
Fr=F, + Fl xU"+ Z(k 2\ it
j=2

Fr=Fy+ FrxU"
So, foranyl,2<[<k,

~k
F}:Fl +F11 x U,
It is easy to see that the F,k obey the recursion relations
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o k1 : .
F::Flk+ 22 (lj‘_‘g)p‘:-lnx U
)=

~k ‘“'k k"l"2
Fy=F,+ 3

(R, s
j=2

~k
This recursion is identical to Eq. (29) except for F, , there the Fll x U term was left
out (and thus will not appear in any of the subsequent F,k). Thus

Fr-F'=G*.LU".
So Eq. (30) can be used to determine the order k normal form, and if Eq. (31) is
written

U= L':projn:f"k
the order k near identity transformation can be obtained.

In order to continue on to higher order terms in the normal form, it is necessary
to convert the i",k' sinto F',k' 8. This is accomplished using the following correction

~k ~k
Flk"—" Fl -pl‘OjR:F N l=2,...,k.

IV. DOMINANT NORMAL FORM
In order to study perturbations of a vector field with linear part given by the
non-semisimple matrix A, we consider the universal unfolding of the linear vector field
Ax used in van Gils et al. [11]

A =][ ite 1 . A=(0pt,H,), R, u= .
a) L it (mphy), aeR, p=p, +in, e C 32
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This may be calculated explicitly using the homological equation (10) applied to first
degree polynomials hl(x), in the same manner as (23) for cubic polynomials. The
unfolding parameters A are found in terms of the original linear coefficients to be

"“‘%{f};looo+ f;9100 and “=‘12;1000

The above unfolding of A(A) may also be found from the viewpoint of versal
deformations of matrices, as in Arnold [1], allowing for rescaling of time.
Now, making the observation that z; = 0 implies z2 = 0 and the normal form
commutes with S, we choose a transformation as in van Gils et al. [11]
z =re?®, zp =rePw,w=u+iv, ®=wt+6

which yields three real equations independent of the phase variable 8

£ =rla+u+ r2(c; +2dzv)
U= pm-uZ+v2+r2(e;+2fv)
Vv = pg-2uv+r2 (fy - 2e2v)
and 8 = v+ r?(d;- 2, V).
In order to "blow up" the dominant terms, we rescale the above variables as

r=¢f,u=et, v=e9, et=t, a=ca, p =€, Hz = 2. Introducing ¥ 2=p

and dropping the hats, we have, in new time,

p'=2p(0+u)+e2; p2+0(e?)
w= pr-uZ+ v2+ ep + 26 pv + O (e?) (33)

v = iz - 2uv + fip - €26, pv + O (€?)
and 8'=v+ ed;p+0(e?
where

¢1 = Re(a;), e; = Re(by), ex= Re(bp)
Im(a,), f; =Im(b,), f, = Im (by).

Q.
[
]
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V. AVERAGED EQUATIONS
In this section, we shall demonstrate tae relationship between second order
averaging and normal forms for the nilpotent case under consideration. To this end,
we make use of the scaling suggested by Hale [13] for linear operators whose
superdiagonals are equal to 1. In order to make the calculations less cumbersome, we

only consider cubic nonlinearities and the nonlinear system can be written as

v = A(u)y + F(y1, ya) + FL(y)+ F2(y)+ F3(y2, va) (34)

where A is as given in Eq. (22) and the nonlinearities of degree 3 can be written in

terms of the original notation as

4,
F = 21 {f',’gooo Yi + ifzom 5213'3 + f‘::;1020 yxyg + f::;ooao Yg} €,

4
1
F =2 (f:moo Yi Yp+ f:zoox Yi¥e+ {:;mo Y1¥o¥s + e;lou Y1Y3Ys
s=1

+ ffmzo Yz)% + i::.0021 )'23)'4} €

F = 2 { ,12005’13'2+ 51002 nyz"'tf,nox N¥2Ya t Lep111 Ya¥aYe

*+ Lio2io l'zzys + L0012 Yayﬂ €,

Fs = g {ffpaoo Yg + f;:pzoj, 3’22)’4 + L0102 YZyE + f:'.OOOG yi} ¢

In order to bring the above equations into "standard form", we make use of the scaling
suggested by Hale [13], which is in line with that of van Gils et al. [11],
Y1 =ex1, y2 = €52, y3 = &X3; Y4 = x4
ana transform Eq. (34) to new variables z by means of the transformation
ot

x; = ze" ”2-ze v, i=12.
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This procedure yields a set of equations in standard form to O(e2) as

z = eX°(z,Zt) + 2X!(z,5t) , z=(z1, 22) (35)

X =[ " ] , Kta [e '*’"F‘i(zl,‘z‘x,t)}

€ ot F% (zlx-z-l,t) e -t Fé (Z,i,t)

where

(36)

and the zZ equations are obtained by conjugating Eq. (35). Now, applying the
averaging procedure up to the second order yields

z=eM (X°(zZY) + €M [ex W+ Ky Wy W z,Z ,t)‘
t t \az oz 0z 0z I
(37)

where l\tll is the averaging operator defined as

T
MG¢)=tm 1| ()dt
t Toew T

(o]

and
t

Wz = f Xdt+ oz, X @z)=X"GLY-MX Gz
0

ie.
W,(zZt) =c(z2) and WJz,%t) =k(z,Z,0 + c;(2,2)
with k(z, Z, t) defined as

- : -2 o
k(z,z,t) = gil;.j 29000 23 €2°* - 5‘11;; G020 2173 € 20+ L0000 7 €410

410)

where c is an arbitrary vector function of z and Z. The choice of ¢ is made such that
the normal form coincides with the resulting second order averaged equations. We
have made two observations concerning the product terms within the second curly

bracket of Eq. (37). Note, in Eq. (36), that X3 is only a function of z) and Z; and
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Xi=o0, 5?; =0 Thus, the second order contribution from k(z,Z,t) is identically zero.

The second order contributions to the averaged equations are

e M {c2 -L (c)+X] (z,”z‘,t)}

e? M {2 20010 C1Z1%1 *+ 2010 €125 - L (e X, (z,i,t),

«.) «.) = )= )
where L(°)=‘§z—1'zz"“a—z;' t82:201oz¥zl - ';Ezz' ‘5%;‘11020 315?-

Comparing terms of like order in the averaged and normal form equations, the
appropriate choice of the vector cis given by

GEZD=02, BD=0y227.
Equating coefficients yields

S} ézom'“z =ﬂf:,‘zow - f;‘,zom 'é;mo]» ay é:zom‘“z =fl‘[f:2mo - ézool -f;;mo}.

It is obvious that a; must be real. Choosing a; to be identically zero, a, is obtained

as

) =‘fl‘[t:201o - ’32001 ‘é,ulo]-

Thus, the averaged equations are

i, = €2, + €8, (2, %))z, + O

n

iy = eby(2)))2) + € [by (2, %) + (8 - by) (By2,)] 2, + OE™). (38)
The second pair of equations are obtained by conjugating Eq. (38). As before, we
introduce the universal unfolding defined by matrix A(A) (see Eq. (32)) into Eq. (38),
use the transformation
25




7z =rei® 2z, =rei®w, w=u+iv (39)

and rescale the variables as

et=t, u=lly, p=c’h,, a=ca. (40)
After substituting Eqs. (39) and (40) into Eq. (38) and dropping the hats, we have the
averaged equations in terms of p = r2 as expressed in Eq. (33). Thus, one can
conclude that the dominant terms of the scaled normal form equations (33) agree

completely with those of the averaged equations.
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APPENDIX

The transformations h? ,i=1,2, which eliminate the quadratic terms are:
m

bao00 = 25 (Ganoo + 198 2000

1uoo '(35[( 1;2000 21100)“( zzooo*“’z'fuoo”

gm0 = 2 [ 00 ® O - B ssan* Shoano) +10(- 22 3000+ 21100 0% 03
b0t = 5 (Gono ~ 10 1010

banio = o [0 Baore * Gonre * 1 [ Faora™ @ o]

2 -
hmozo'ﬁ f‘::oozo iw 10020)

hf;lOOl =L [‘”( f:;1010 + f;IOOI’ +i ( 2:1010 ﬁ;mox)]

w?
hf;om = ;)14' [ &:;1010" “’2( 1;0110 1 ;1001 20101) + "”( 1;1010 ~ 1mox)]
hf;oou = _3:)5 [l “’( 10020 ¥ l:ﬂou) +i (‘ ‘3 fLz:;oozo "’zf;oou”

h?moz = 30t 'g i‘:;0020 + %(’ f?;oon + 2,000) + i‘”(g é;oozo - msz(m”
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hz' =-0],;[-mf +x‘2’2 + oo)]

2;1100 2;2000 2;02

2 _ i
h2;1010 T ® tg;lom

bono = 53 (a0 *# Gouud

booz0 = Gy f200m

b o101 = 25 [ (oo * Gaond) + § (2020 - fnol
B3 01 = -3-@15 (§ £} 0020 * 10 G001

baoors = 325 | 3 fooon*1(B G~ 9" ]

The contributions from the quadratic non-linearities to the normal form are

given by the coefficients 3, ag, b, and by, and are expressed as follows:

a = é {i‘ ﬁ;xolof%;zooo - ﬁ,2000 f%;1010"% i%;1001 fg,zooo + ‘% flé;lOl()ﬁ;lOlO

+ % éﬂozo ézooo t2,1.010 69110 t22,142)10 ti,.‘\()(’l iﬁ.loxo ti,l(bl()

'i‘ ﬁ;OllO t«%:1010 + % 6;1001 ‘3;1010"]‘% é;0020 f%;11()0 - ‘é ﬁ,ooeo ﬁ,2000
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a =

1 :
+ 36 fg;oon ﬁ.zooo}
+ A {i%;lolof%;zoo«)' te2;1010 fg;lOlO - -22.7 f%;oozo ﬁ;zooo

o’

sa? (3

'.4 f%;1010 fal;2000 - 1‘ ﬁ.;ZOOO ta2;1001 + ]2‘ f?;1100 !%;1010 + % fg;ozoo 6;1010

+ ‘l‘ ﬁ;mo fg;uoo + % f%;IOOI f%;uoo - -} ﬁ;ouo fg.zooo + % ﬁ;xoox fez;zooo
- i- 1%;0101 f%;zooo - i fg;lolo ta:s;ono - i‘ fg;mo é;IOOI’ 2 te1;1o1o f:?s;wm

- ]4' f%;ouo fg;mlo - é f%;oozo 31100 - % f?;oozo fg;zooo - -115 fg;oou f%;zooo
- f} fg;wol f‘i:ouo - ‘41 fg;lool 5;1001 - ‘2 femom f?t;lolo - :} f%,mm f‘1;1010

- ‘f'é t22;0011 ﬁ;uoo - % f%,‘.0011 t%;2000 - ‘61 t%;0002 f2,2000]}

‘1‘4 f2;1010 t3;1010 -4 tz;oozo t242000 + o1 f‘fzooo t;ﬂllo’l t212000 é;;1001
81 3 3
)
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ABSTRACT

A generalized four dimensional, nonlinear and
non-autonomous system is studied. The effect of
periodic parametric excitations is examined on systems
that exhibit Hopf bifurcation with one to one resonance
along with subharmonic external resonance. The linear
operator is assumed to have a generic nonsemisimple
structure. In this case, the dimensionality of the system
can nct be reduced despite the presence of an S!
symmetry. However, the system is simplified
considerably by reducing it to the corresponding four
dimcnsional normal form equations. The local behavior
of the equilibrium solutions is studied along with their
stability properties. Several codimension 1, 2 and 3
bifurcation varieties are obscrved. Some of the global
bifurcations that are present, can be associated with the
Bogdanov Takens and {0, +i, -i] bifurcation varieties.
The numerical results, obtained by using AUTO and
CHAOS, indicate the existence of homoclinic orbits

ahong with the period doubling behavior which leads to
chaos.

1. INTRODUCTION

The objective of this study is to investigate the effect
of periodic parametric excitations on systems that
exhibit Hopf bifurcation with 1:1 resonance. For this
Purpose we consider a generalized four dimensional,
nonlinear, non-autonomous system. It is assumed that,
8t some critical parameter values, the linear operator
€ontains two coincidental purely imaginary eigenvalues
which generically lead to a non-semisimple structure.
Under these conditions, the system defined on a four

d‘"‘OHSional center manifold is described by a
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5-parameter family of normal form equations.

One to one resonant Hopf bifurcation has been
studied by several authors in the past (Caprino et &l.
(1984); Meyer (1984), Krupa (1986)) and recently by van
Gils et al. (1990), who considered 3-parameter unfolding
of the vector field singularity. The work of van Gils et al.
considered a system similar to one presented in this
paper but without parametric excitation, and the
associated normal reduced to three
dimensional first order equations. Here, several
codimension 1 and codimension 2 bifurcation varieties,
in addition to some interesting periodic behavior, were
examined. Furthermore, it was shown that the normal
form of the fourth order autonomous system has an S1
symmetry, and hence it is possible to reduce the
dimension by one, bringing the system to a set of three
equations in an appropriate co-ordinate frame. In this
paper, we consider the corresponding nonautonomous
generic system. As in van Gils et al. the structure of the
equations in the present case, can be simplified
considerably by bringing them into their normal-form or
by using the method of averaging. Here, a modified
version of the normal form of Namachchivaya et al.
(1992) is considered which takes into consideration the
subharmonic resonance with respect to the forcing
frequency, in addition to the 1:1 internal resonance.
However the disadvantage in such a system with
parametric harmonic excitations is that the
dimensionality of the system can not be reduced.
Moreover, in addition to the traditional 3 unfolding

form was




parameters for the autonomous system, one has to
introduce 2 more parameters, namely the amplitude of
the forcing and a detuning parameter which represents
the deviation of the excitation frequency from twice the
natural frequency. One expects very rich local dynamics
in such a system due to the presence of 5 parameters.
For the problem under consideration, there is an S!
symmetry and the normal form equations can be further
simplified. The equilibrium points of this simplified
fourth order system extend to the periodic arbits that are
the relative equilibria of the original four dimensional
normal form.

The system of equations discussed here arises in a
variety of physical problems which have 1:1 internal
resonance under parametric periodic excitation. The
problems of parametric excitation of nonlinear
dynamical systems are of importance in several
branches of engineering such as vibrations of beam
structures under dynamic loads, flow induced vibrations
and control systems. The major part of this analysis
deals with the local behavior of the equilibrium solutions
and their stability properties. We also study the global
bifurcation set associated with Bogdanov-Takens and
{0, +i, -i}) bifurcation vaneties. In addition, we observe
period doubling bifurcation which leads to chaos. Due to
the complicated nature of the computations involved, we
have used symbolic computations extensively. The
analytical solutions have been compared with those
obtained numerically using AUTO [Doedel (1986)], a
general purpose software package for tha bifurcation
analysis of differential equations and the maps. We
have also used CHAOS [Aronson (1991}], which is a
SUN-based software program for numerically
gsimulating the nonlinear systems. The analysis of the
complete global behavior is in progress and we
anticipate presentation of these results in the near
future [Namachchivaya and Malhotra (1992)).

2. STATEMENT OF THE PROBLEM

We consider the following system on a four
dimensional center manifold:

x = f(x,t) 2.1

where x € R4, is the state vector and f:R4 — R4 | is the
non-autonomous vector field which is analytic in its
arguments. We assume that the system (2.1) has both
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quadratic and cubic nonlinearities, and the linear
operator A=D,fl0) has two equal purely imaginary
nonzera cigenvalues along with their conjugates.
Furthermore, the double eigenvalues are assumed to be
non-semisimple, and the time dependency on fix,t) is
given explicitly in terms of parametric harmonic
excitation. Under these conditions, the system (2.1} can
be expressed as:

y=Ay+puByCosiwt) +flyy) (2.2)

whereye C4, y13=x1%1x2, y24=x3%ixq prand wr are
the amplitude and the frequency of the parametric
excitation and B is a constant 4x4 matrix. f(y,§; is the
nonlinear term. The linear operator, A, has the
following non-semisimple form:

! 2.3)

where i @ is the pure imaginary eigenvalue. In the
subsequent sections we study the stability and the
bifurcation behavior of the system described by Eq. (2.2).

3. TRANSFORMATION TO STANDARD FORM

In order to study the dynamic behavior, it is
desirable to reduce the system under consideration (2.2)
to its normal form. The normal form of the
nonautonomous (periodic) linear part of Eq. (2.2) is
obtained via a periodic transformation y = v + H(t) v (See

Namachchivaya and Mathotra (1992)), as:

u _oiuyt b
b3V, e |
1ot Tuyt
boa -V, € + bV,
v=Av+opye ot T2 + ho.t.
-1axt
by, v, e
b gt b -|w,li
vy & + v, e ;
L2 V1 31 V2 i
! (3.1)

We define a new time 1 such that 1= wrt, where
wf =y (1-€A) and A is the detuning parameter. In
addition to the internal 1:1 resonance, we consider the
case of subharmonic parametric resonance (k = w/wo
=1/2). Without loss of generality, letting vp =1, and using




g

————

the new time derivative with respect to 1, Eq. (3.1) takes

the fellowing forny:

: v iy . ]
o= ] . ! I
\1...‘ +\2+2b13v1e}+

[

e 2N v, oMb,y €Y + hot
9 2 2 1371

@3.2)

+

v, EL;J "if(bz3 ¥ e+ bV, et

2 %(Ab2301 e”+lb,362 e”)} + ho.t.

The prime denotes differentiation with respect to 1, and
the other two equations can be written as complex
conjugates of these equations.

The next step is to include the normal form of the
nonlinear terms in Eqs (3.2}. For a detailed discussion of
the calculation of the nonlinear normal form with a four
dimensional non-semisimple linear operator, one is
referred to Namachchivaya et al. (1992). Following this
procedure yields the complete normal form of the
original system of Eq. (2.2) and is expressed as following:

l\]

' , s B p o gt 25 2z
v, = [—+\ + —2‘b]3xl e +a,v)°v,+a,v,°V,

- iv H _
.y 1 , [ad 4 PR
Sap vy v vy b4+ e 5 +\2+2b13»le

2= .20
+3,v°V,+a,v*Vy-a,v, v, V] + hot

(3.3

v He - _ _
= [—zl + ‘2‘(b23‘1 '+ bV, e )+a v v, T,

~
|

v , 2 5 . T v 2
»b.‘lle.,‘_,vl'»]:;lm1 Vi+8,V,VoVy-a, V) vy

4-b2v12 Vo +£l(%—z + l—;—;(bwvl e’

3 )1 , o 2 -
+ bV, € )+ (a -byiv, vy ¥+ by v, Y,

+ay vV Vy-a, ¥, \'22 +b, "'12 Vo] + hot
Now consider the universal unfolding of the linear

operator A as given by (2.3). The two dimensional
analog of A can be written as:

A =[ *3’“1”] (3.4)

The universal unfolding of A, obtained from a four
parameter versal deformation given by Arnold (1983), is
expressed as:

_ 1 ova) 1
Ao) = w o Gwea) 3.5)

where o= (a, p) and 4 = (43 + i y3). van Gils et al. (1990)
interpret o as a real crossing parameter and y is
interpreted as a complex splitting parameter for the
eigenvalues of the linear operator of A. In order to get
rid of the time dependent terms in Eqs (3.3), we make the
following transformation,

- (0 v2) - (12
Vig= Uyp€ Vie= Uz’ (3.6)

The nonlinear terms remain invariant under this
transformation due to S! symmetry and, in order to
distinguish the dominant terms in Eqs (3.3), we
introduce the following scaling:

2 2
W a=E€213, Uy =€ 25,, W=t h, and
a=¢€f, p= v 3.2

On applying the universal unfolding given by (3.5), the
transformation given by (3.6) and the scaling given by
(3.7), the normal form Egs (3.3) become

€lBz; +25 + l)i} +

£ [gbm Zj+ A2y + 2, 2,23 ] + oled)

(3.8)

22'—'5

vz, +f82z) + gbyy 7, + 1_1_21_.2 + b,zlz’i,]+

52[3"13 Z,+8byy )z, +a,2, %, 2, +by 2,75,

byz,Z,2, + b lz, ]+ oled

where ay, by, az, bz can be expressed in terms of the
original nonlinear coefficients of Eq. (2.2). It is worth
mentioning that these equations up to O(e3) terms, have
also been obtained by using the method of averaging, as
shown in Namachchivaya et sl. (1992). The above
mentioned reduced system has 5 parameters. The three
unfolding parameters (B, v,v2) control the behavior of

-




the eigenvalues of the linear operator A, while g and A
control the extent of the forcing in terms of its amplitude
and the deviation from the subharmonic excitation
frequency. With the help of these parameters, it is
possible to explore the local dynamics of the system in
the neighboring regions. In order to explore the
dominant dynamics, the time t i8 rescaled ast = Ve so
that in the slow time Eqs (3.8) take the following form:

ilzﬂzl+zz+%§l+0(€)
3.9)

i, =vz +Bzy + gbz, + &252 + blzxzil+ Oe)

where gh = g bo3 , and the dot denotes differentiation with
respect to the slow time.

4. STABILITY OF THE TRIVIAL SOLUTION

It is clear that 2 =0, Z =0 is the trivial solution of the
normal form equations, and as a first step we consider
their stability. Transforming Eqs (3.9) to real variables
(x1, ¥1, X2, y2) by means of the usual transformations

X = (z,+%)R2, y, = (z,- %) A2i) and
= (+5)2, yy= (2~ ) A2,

yields the following set of equations:

- 0 —
X, L3
Y 0
Nfop| ¥,
X - (4.1}
X2 X2 2 2 3
Y2 /) cz(xls‘“xl Yl) - d?(xl yl"yl)
b e s+ et end |
where
B -A2 1 1]
RERY B 0 1
(\)l + gb) - Yy p Y] (4.2)
Vs (v, - gb) V2 (]

and v{ and vy are the real and imaginary parts of the
scaled complex splitting parameter v, and cz and d2 are
the real and imaginary parts of the nonlinear cvefficient
by in Eqs 3.9. For the linear operator L, the non

redundant stability conditions are expressed as:

T1 : <0
T2 : 0 + vl + [y + vyl > g’ 43
T3 : 022<-u30'u10uw
where,
2
2
T Y (R AN RE
and
2( ¢ 2.2 .
vy = lapte 6% 4 o) 4
o =
ag” +2%)

Thus T2 and T3 completely determine the stability of the
linear operator L once T! is ensured. The typical
stability region for the trivial solution of (4.2} is shown in
Fig. (1) in (v}, v2) parameter space, where T2 represents
the remion ocutside the circle centered at (-vyg, -ugi with
radius gb, whil: T3 represents the region on the left side
of the parabola described by 12 + vig Uy = ugg.

§. EXISTENCE OF NON-TRIVIAL SOLUTION

In order to examine the existence of the non-tnvial
equilibrium solutions, we need to transform Fqs 3.9 into
a convenient coordinate system. The structure of these
equations suggest the coordinate transformation of
(21, 22) to the new coordinates (r, 8, u, v) by using:

]

7y =re' 23 =re ?{u+iv) (5.1)

where (r, u, v) € R3, and 9 is the phase vaniahle This
leads to the following set of four coupled equations.

2p(ﬁ + u) + Ke)

-
i

u = ul+(v2~u2) +cyp + &b cos28 + Ofe)

v = u,-2uv+d,p-ghsin2@+ Of)

@ .
)

&40
v#2+ (e

where p =12 > 0. This coordinate transformation
involves a singular change of the coordinates, which




rostizcts the applicability of Eqs (5.2) near p = 0, but this
possibility has already been considered in the previous
section. In the absence of parametric excitation (i.e.,
gb = 0 and A =0), Eqgs (5.2) reduce to a set of three coupled
equations (in p, u, v), independent of the phase variable 6
and a fourth equation describing the evolution of 8,
which is precisely the form studied by van Gils et al.
(1990). The parametric excitation acts to couple the
phase (8) equation with the other three equations. The
equilibrium points of Egs (5.2) extend to the periodic
orbits of the normal form of the original system. Thus
the study of the non-trivial equilibrium solutions of the
above system is vital to our analysis. The dominant part
of Eqs (6.2} is

p=20(B+ul
i = vy +{vZ-u?) +cyp+gbcos2
6.3
Vv = uy-2uv+d,p-gbsin2
o A
0 v+2

The equilibrium solutions of Egs (5.3) can be obtained by
solving the following algebraic equations

B+u=0
u; + (V2 -u?+c,p+ghbcos20 = 0

(54)

Uy - 2uv+d,p-ghsin20 =0

v+Aa2=0

Eqs (5.4) yield the following equilibrium points

.btVb*-dac

2a
u=-§8
- M2

(5.5)
vZ-2uv+d
= 1 sin?! voLuvrdp
2 gb
p satisfies the following quadratic equation:

apZ+bp+c=0 (5.8
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where
8= (c22 + 37

b = 2[cz(u; + v10) + da(vz + Vool 5.7)

¢ = {up+ VP + (2 +uf - gb?

and vjo and vzg are defined in Eqs (4.4). The non-trivial
equilibrium solutions (5.5) are admissible only if p is real
ar-! positive.

According to Implicit Function Theorem, these
equilibrium solutions (5.5) extend smoothly to the
equilibrium solutions of (5.2) for small ¢ > 0, if the

Jacobian matrix (Jg) of (5.5) is nonsingular. The
Jacobian matrix (Jg) is given by:
0 2p 0 0
J=| 2 2B -a e
° d A 2P e (5.8)
0 0 1 0
where
e, = - 2{uy + vy + dop], ey = 2{v; +vyg + cop]
Det [J,) =4p[g + apJ‘ (59

a and b are given by Eqs (5.7). We observe that if the
discriminant (D) of the quadratic equation (Eq. (5.6)) is
nonzero, then the Jacobian Jg (5.8) is nonsingular, i.e.,
D=0%-4a0)20 = Det[J0} # 0 except where D=0
This implies that the equilibrium solutions (5.5) extend
locally in €, to the equilibria of (5.2), except where D is
zero. Throughout this investigation the nondegeneracy
condition i.e., (c2? + d2?) > O is assumed to be satisfied.
Eq. (5.6) suggests that p may have 2, 1 or 0 equilibrium
solutions that satisfy the requirements on p. Depending

upon the values of the parameters we have the following
scenarios.

Case A:

The following should be satisfied for twe
equilibrium solutions of p to exist, which would lead to
real and positive values of p.

Al ¢y (v + vy + dy(v, + vy <0




r—

AZ (v + "10'2 + {vy + uzo)z - gb2> 0
A3 |dy(vy + i) vy + vy)| < l ' (czz* dzz) 'gb'

Case B:

If a>0,and ¢ <0, Eq. (5.6) will have only 1 root that
satisfies the requirement on p. In this case, the sign of
the coefficient b does not affect the number of
equilibrium solutions of p, but it determines the
magnitude of the positive root of p. Thus, the following
condition needs to be satisfied for only one root of p to
exist.

Bl (v + um)z + (uy + 020)2 -gb2<0

Elsewhere in the parameter space, p does not have
a permissible solution. Figure (2) shows the typical
regions where 2, 1 or 0 non-trivial equilibrium solutions
of p exist for different values of the nonlinear
coefficients. For both cases (Fig. 2a and b), there is one
permissible root inside the circle, two such roots outside
the circle between two tangent lines and no real and
positive roots elsewhere. Furthermore, the second
stability condition for the trivial solution T2, and the
existence condition A.2 and B.1 are given by the same
circle centered at (-vyg, -v2¢). For the nondegenerate
case (a > 0), various possibilities for the number of non-
trivial equilibrium solutions are shown in Fig. (3),
where f(p) is plotted vs. 0.

6. STABILITY OF THE NON-TRIVIAL SOLUTION

In this section we discuss the stability of the non-
trivial equilibrium solutions obtained in the previous
section. The Jacobian matrix (5.8) has a dependence on
the equilibrium values of p, which in turn depend on the
system parameters in a complex way as given by Eqs
(56.5). Using the Routh-Hurwitz criteria, we arrive at the
following stability conditions that must be satisfied for
the non-trivial equilibrium solution (if it exists):

Ni: p<O
2 3% .
N2: {v; +v,0) < 2|B * - 2¢p

N3 (2B(u; +vi0) + A(uy+vyg) +2(2Bc, + 0 dy)p) > 0

N4: (121 + ap) >0 6.1

6 2
N5: 808+ 2452 +8 2 96p' v, -850y,
2 3
+ 168 u12-32B Ru2-412u22-128{3‘c2p
2.2 2
2328 0 oy p- 641 vy dyp- 1647y, dyp

64 d, p2- 16074, o) > 0

where p is given by (5.5). Due to the complex nature of
these conditions, it is difficult to comment on the natyre
of the stability of the non-trivial equilibrium solution.
Figure (4) indicates the several solution branches of p,
which are given by:

- _ . b Vb-dac

o » 1 (6.2)
2
pro=le R YR 000 (6.3)
2 [
p*t = (¢ 5% + @nbwnm (6.4)
/1 2
2 ooy Y odac,y )y 000 (6.5)

P 2a 2a

Clearly, the lower branch (p-) violates N4, which
requires:

-h
p>2a

Thus p*
equilibrium solution.

is an unstable branch of the non-trivial
It can be shown that p* and p*!
branches are unstable since they violate the sufficiency
condition (N5). Numerically it can easily be checked that
part of p*2 equilibrium branch satisfies all five
conditions of stability (N1 to N5). The complexity of the
computations hinders the calculation of the stable part of
p*2 equilibrium branch, analytically. Sometimes the
fourth condition (N4) can provide important information
about the stability of the non-trivial equilibrium solution
branches.

7. BIFURCATION ANALYSIS

In this section we describe the bifurcation behavior
associated with Eqs (4.1). The steady state solutions of
(4.1) represent periodic solutions of the original system.
In this system, several codimension 1 and codimension
2 bifurcation varieties are detected along with a
codimension 3 singularity. One is referred (v




~amachchivaya and Malhotra (1992) for a detailvd
description of the necessary conditions for the different
pifurcation varieties to exist. Following is a brief
description of each of these bifurcation varieties that are

detected in our system (4.1):

7.1. Simple Bifurcation:

This bifurcation variety occurs when one of the
eigenvalues of the linear operator L passes through zero.
When this happens, the condition T2 is violated. Under
these conditions, the trivial solution loses its stability
and a non-trivial solution with p > 0 bifurcates from the
trivial solution. For fixed values of 8, A and gb, condition
T2 can be depicted as a circle (§) in the parameter space
(v1 ,u2), as shown in Fig. (1). Along any generic path
transverse to §, the stable trivial solution would lose its
stability (provided T1 and T3 are satisfied) through
simple bifurcation, when the following condition is
satisfied:

{u, + “)0)2 + (v + "’20)2 = gb2 .
When the linear operator L has a zero eigenvalue, the
system (4.1) can reduced to its corresponding one
dimensional center manifold. If we fix B, A, gb and v; at
-0.5, 0.1, 0.5 and 0.0, respectively, the one dimensional
manifold, in terms of the nonlinear coefficients (cz and
d2) and the perturbation parameter N2 = v2 - V2¢r, is given
as:

at u, =-0.484446,

W=w'2131,- 199802+ (c, + 1.76 dp) w?]

and,

at v, = 0.484446,

W= w 1491n,-6.97 n22 +(cy- 1.8dy) wz}

It can be easily verified that the nature of the non-trivial
equilibrium branches, as captured by these center
manifold equations, agrees qualitatively with the
numerical results (Fig. 7).

7.2. Hopf Bifurcation:
This bifurcation variety occurs when condition T3 is
violated, j.e.:
2
U2 = -

V3 + Yy (1.2

35

provided T1 and T2 are satisfied. In this case, the linear
operator L has a pair of pure imaginary eigenvalues
with nonzero imaginary part at the critical value of the
parameters. This bifurcation variety occurs along a
generic path transverse to the curve B, which is depicted
as parabola in in the parameter space (v), v2), 88 shown
in Fig. (1), provided other stability conditions are
satisfied. The dynamics of the system (4.1) can be
studied on a two dimensional canter manifold. Once
again, for the same values of f, A, gb and v, the
corresponding two dimensional center manifold can be
expressed as:

A. atve=-0.705354,

Fzr [(05m,-0.71,)+(38¢,-7.18d)r2 + )
0={0426+(-05n,-081,)+(-42¢c,-845d)r? +..]

B. atuvg,= 0.705354,

F=r [(050,+0.70,)+(286¢c,+4.8d)r? +..]
6=[0.5684(-05m,+06n,)+(-2Tc,+41d)r2+..)

where 71 and n2 are the perturbations in the critical
values of v1 and vo. One can easily observe that the
periodic equilibrium branches, as described by these
center manifold equations, have the same dynamical
behavior as observed numerically, in the neighborhood
of the critical value of the bifurcation parameter vg
(Fig. 7).

7.3. Bogdanov Takens Bifurcation:

Now we study the possibility of the intersections of
two codimension 1 bifurcation varieties, the simple
bifurcation & and .the Hopf bifurcation J. At this
intersection (€2) we have two eigenvalues of the linear
operator L, becoming zero, where € is defined by:

2 2
4B, +24v,- Blap’ + 2%)-0 (7.38)

(y + Vol + (Vg + g = gb’ (7.3b)

These equations lead to the following two critical points
in (V1 ,02) parameter space.




ghi
Y “ Bz + 12)
2gbp (1.30)

R
Yap +2h

At each of these critical points the linear operator can be
brought to the following form:

(-4
“l =~\)mt

01 00O
L. = 0 0 0 O
or = 7.3d
00 % O ( )
0 0 0 A,

where A3 and A4 represent the two stable eigenvalues of
L at the critical points (7.3c). Dynamics near this
nonhyperbolic fixed point can be studied by examining
the equations defined on a two dimensional center
manifold. The procedure to reduce the four dimensional
system to the corresponding two dimensional center
manifold is fairly systematic. Once the reduction to the
two dimensional center manifold is achieved, we obtain
the corresponding truncated normal form (Gamero et
al. (1991)) Now we compare our system with a similar
system studied by Takens (1974), which is as following:

W) =W,
v = 3 2
Wy S0, W, + 0 Wot a8, W  +byw,“w,

where a); and ag are the unfolding parameters, w; and
wg are the two dimensional center manifold, and a3 and
b3 are the nonlinear coefficients. Considerable research
has already been done on this bifurcation variety.
Guckenheimer and dolmes (1983) discuss the details on
the global bifurcation behavior associated with this class
of bifurcation.

If we fix B, A and gb at - 0.5, 0.1 and 0.5 respectively,
the linear operator (4.3) has double zero eigenvalues at
the following critical parameter values of v, an v, :

A. v, =029725 v, =044752

If n; and n; are the small perturbations in v, and
VUsa . then the corresponding values of a,, a,, a,and b,
are given in terms of 1 and 1, and the original
nonlinear coefficients ¢z and dg, in the following
manner:

a,=-011n,-109n,, 0,=097n,-14n,

a;=-0.134¢,-134d,, b;=626¢,+8.284,
Forcy =1.anddz = 1, a3 <0 and b3 > 0, the magnitude

of ag and b3 can be scaled to unity by rescaling other
variables. For positive values of vs, as vy is varied from
zero for a fixed value of vy, we obtain the phase portrats
6,7,8,9, 10 and 11 as indicated in Fig. (5), these show
various local and global bifurcations and completely
agree with the numerical results presented in the next
section.

B. v, =0.19775, u,, =-0.54752

The corresponding values of a;, a., a,and b, are
given as following:

a,=01n,+09n,, o,=08n,-1.n,

83=01¢,+07d,, b3=26c,-4.154d,
Forcg=1.anddp = 1., a3 > 0 and bz < 0, the magnitude
of a3 and b3 can be scaled to unity as before by rescaling
other variables. For the negative values of vy, once again
as vg is varied from zero for a fixed value of vy, we obtain
the phase portraits 5, 4, 3, 2 and 1 as shown in Fig. (5).
Thus combining these two cases we can can construct
partially the bifurcation diagram for the original
problem.

Depending upon the values of az and b3, two distinct
cases of unfolding (i.e, I:3a3>0,b3 <0 and II. a3 <0,
b3 < 0) are possible for this bifurcation variety. As
mentioned before, these twa cases are completely studied
by Takens (1974) and Guckenheimer and Holmes (1983).
The other two cases (I¢: a3 > 0. bz > 0 and II¢: a3 < Q,
b3 > 0) can be constructed from I and II by reversing the
sign of wg, oo and time. Table 1 shows the possible cases
of unfoldings that can occur for all possible
combinations of ¢y and d3, near the two codimension 2
bifurcation points A and B.

Table 1

Case

Possible unfolding
(A)

Possible unfolding
®)

c2>0,d2>0

I1¢

I, Ic

cg=0,d2>0

I1¢

I

¢2>0,d2<0

I, Ie, Ilc

[e, II¢

c2=0,d2<0

I

c2<0,d2>0

I, II, II¢

c2>0,d2=0

[

c2<0,dp<0

I

I, 1IIe

c0<0,de=0

I

11




7.4. Simple and Hopf Bifurcation Varjety:

In this case, the lincar operator has a simple zero
eigenvalue along with a pair of pure imaginary
eigenvalues for some critical value of the parameters.
Following are the requirements for the simultaneous
existence of simple and Hopf bifurcation varieties:

(v, + "10)2 + (v + ”20’2 = 8b2 (7.4a)
2 2
4Bv, -2 v,- pl20p® + 270 (7.4b)
2
v < (3 B+ )LT) (7.4¢)

These conditions lead to the following critical point in
(v1,v2) parameter space:

2 2
O g e
4 g2 ap’+rd)

(74d)
2
“PA+ zf‘zq/'r—g‘éb—“z_ -4
B@p+1)

At the critical point, the system can be reduced to its
three dimensional center-manifold and the linear
operator assumes the following form:

0-w0
Ly=iw00
000

Vier =

Voer

(7.4¢)

The structure of the linear operator completely
determines the normal form for the linear and
nonlinear parts of the three dimensional center-
manifold equations. If we fix 8, A and gb at -0.1, 0.1 and
0.5 respectively then the resulting normal form, in
cylindrical co-ordinates is given as:

r(g,+a,rf+a,z2) + hot.
13y, 12

z(y+ 2, P +3522) + hot (7.40

z

0

w + hot

where,

Ky = 0.04m, + 0950,
=227, - 56n,

a;; = 0.58¢, + 3.42d,
a5 = -564¢c, + 68.15d,

<Y

ay = 4.72&)_ - ‘2.6662
ay, = 5584 ¢, - 142.25d,
w=064

Wi and pg are the unfolding parameters that are
expressed in terms of ny and ng which represent the
perturbations in the values of v; and vg from their
critical values. i.e.,
N1 = V1 - Yier, T2 = V2 - V2er

where Vi = - 0.175, v2¢r = 0,455, and aj;'s, the
nonlinear coeflicients of the the normal form, are given
in terms of nonlinear coefficients ¢z and dg.

We notice that the 8 equation is decoupled from the
r and z equations, 80 we can study the planar system
(r,z) independent of O and later interpret the results for
the full three dimensional system (r,8,2). A rescaling
procedure can be applied to the first two equations of 7.4f
to bring these to the form described in Guckenheimer
and Holmes (1983). After rescaling, these equations up
to third order are expressed as:

f=r(g+?+bz?)

(7.4g)
i:z(u2+cr2+d22) €
where d=%1, b=12 and c=
[ag,} layl

This system has been studied by Takens(1974), Langford
and Iooss (1980) and Holmes (1980). In this work, we use
the same numbering scheme as given in Guckenheimer
and Holmes (1983). They classify 12 different cases of
distinct unfoldings. Table 2 shows the possible cases of
unfoldings that can occur for all possible combinations
of ¢z and dg, the nonlinear coefficients of our original
norma) form equations.

Table 2

Case Possible unfoldings

c2>0,d2>0 {Ia, Ib, II, 111, V, Vla, VIb, VlIa, VIIb

c2=0,d2>0 I, Vla, VIb

c2>0,d2<0 {111, VIIa, V

c2=0,d2<0 | III, VIIa, VIIb

c2<0,d2>0 11, VIa, VIb

c2>0,d2=0 | I1I, Vila, VIIb

c2<0,d2<0 |11, I, IVa, IVb,V1a,VIb,VIia VIIb VIII

c2<0,d2=0 |11, Vla, VIb

If we start with system (7.4g) and consider the case where




cg = dg = 1.0, one can easily notice that the resulting
system corresponds to VIa class of unfolding. The
bifurcation set and the associated phase portraits for this
clags of unfolding are discussed in the literature. When
viewed for full three dimensional flow of Eq. (7.4f), these
results qualitatively match with the phase portraits
obtained by numerically integrating the original normal
form equations (Eqs (4.1)) near the relevant parameter
values.

7.5. Double Hopf Bifurcation Varietv:

Now we consider the case where the linear operator
L has two pairs of identical purely imaginary
eigenvalues. The conditions for this codimension 2
bifurcation variety can be simplified to the following:

A=0, B=0, v1<0, vo=2gh and V;2+v22>gh? (7.5a)

Under these conditions, the linear operator takes the
following form:

0 0 1 0
- 0 0 0 1
Iﬂ - (Ul + gb) . uz o o (7.5b)
v (w-g) o 0 |

Whether Ly will have the semisimple structure or non-
semisimple, depends upon the value of gb. For the
stability of the trivial solution, we require B < 0,if § =-¢,
where 0 < € << 1, the typical bifurcation diagram for this
case is presented in Fig. (6). Along a path, transverse to
B2, the trivial solution loses its stability through double
Hopf bifurcation as § - 0. In fact vz = + gb is the
degenerate form of the ) curve as p - 0 and A — 0.

2
P: V2 = - V30 + Yy (7.5¢)

As B - 0 and A — 0, we have vy — 0 and vg9 — gb?,
thus vg = 1 gb.

7.6. Bogdanov Takens and Hopf Bifurcation:

Along with the assortment of codimension 1 and
codimension 2 bifurcation varieties, we may also have
the case where the linear operator has a pair of zero
eigenvalues along with a pair of pure imaginary
eigenvalues. This codimension 3 bifurcation variety has
not been studied in detail. The conditions for the linear
operator L to go through this bifurcation variety are as
following:

B<0, A=0, uvw=P and vy=tgh (76

This is also a degenerate bifurcation variety (€3). Along
a path through €3, the trivial solution may lose its
stability through {0, 0, £ i} bifurcation variety.

The trivial solution may lose its stability in one of
the many ways mentioned in this section, giving rise to a
non-trivial steady state branch or a periodic equilibrium
branch of solutions. The non-trivial equilibrium may
also lose its stability through a secondary bifurcation.
The secondary hopf bifurcation occurs when condition
NS5 is violated. In this case a, secondary equilibrium
branch of periodic solutions is generated. These periodic
branches may lose their stability after going through a
period doubling or homoclinic bifurcation, which may
lead to chaotic behavior. The other bifurcation varieties
(of higher codimension) are also possible, but those are
not considered hcre.

8. NUMERICAL SIMULATIONS

Numerical computations were performed in order
to verify the results obtained in the previous sections and
to study in more detail the various bifurcation varieties
and the structure of the periodic orbits. The numerical
simulations were carried out using AUTO, a software
package for continuation and bifurcation problems in
ordinary differential equations. The structure of the
periodic orbits was studied in detail using CHAOS, a
versatile software for simulating nonlinear systems.
These numerical simulations were very helpful in
confirming the bifurcation behavior obtained through
analysis and in providing a substantial clue for the new
phenomena, which were global in nature and not
detected through the theoretical analysis. The
parameter regions where period doubling or chaos may
occur, were located as a result of these simulations.

Figure (7) shows the I1-parameter bifurcation
diagram for the normal form Eqs (4.2). In this diagram
the coordinate y) is shown vs. v,, as v, is varied between
- 1.0 and 1.0, while B, v,, A and gb are fixed at - 0.5, 0.0,
0.1 and 0.5, respectively. The nonlinear coefficients c,
and d, are fixed at 1.0. By changing the sign of either c,
or d, , the orientation and the nature of the stability of the
non-trivial equilibrium and periodic branches change,
but the bifurcation behavior remains qualitatively
similar for codimension 1 bifurcation variety. In these

dizgrams the solid (dashed) curves represent the s ablu
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,un=iable) stationary solutions, solid (open) circles
represent stable (unstable) periodic orbits and solid
(open) squares represent Hopf (Simple) bifurcation
varicties. As v, is increased from -1.0, the unstable
trivial equilibrium branch first gains stability through a
Hopf bifurcation (at label 2), which results in a
equilibrium branch of stable periodic solutions. The
trivial solution loses its stability through a simple
bifurcation and results in an unstable non-trivial steady
state equilibrium branch (at label 3). As v, is increased
further, the trivial branch of equilibrium goes through a
Simple and a Hopf bifurcation and results in a stable
steady state branch (at label 4) and an unstable periodic
branch of equilibrium solutions (at label 5). This non-
trivial equilibrium branch loses its stability through a
secondary Hopf bifurcation and gives rise to a secondary
branch of stable periodic solutions. This matches
identically with what has aiready been shown in Fig. 1,
2a and 4 of the previous section.

The periodic branch (through label 2) approaches
the unstable non-trivia) equilibrium branch and loses its
stability by going through a homoclinic bifurcation. The
transition from the stable periodic orbit to the homoclinic
orbit it clearly visible in Fig. (8 a & b). The labels in this
diagram (Fig. 8) correspond to the labels in Fig. (7). The
unstable periodic branch (at label 5) rises up and tends to
approach the unstable non-trivial equilibrium branch,
but it merges with the secondary branch of stable
periodic solutions (through label 11). A very interesting
phenomenon is observed just before the merger. The
unstable periodic branch (through label 5) goes through
a cascade of period doubling bifurcation, which
eventually leads to chaos (Fig. (9)). Precisely at the
merging point a homoclinic orbit is observed (Fig. (8d)).
This homoclinic bifurcation is due to the proximity of
Bogdanov-Takens bifurcation point. The lower branch of
the non-trivial cquilibrium scolution (through label 4)
also loses its stability through a secondary bifurcation,
which results in a symmetry breaking stable periodic
branch, which rises up and goes through a period
doubling bifurcation near the unstable trivial solution
branch and ends with the period becoming very large.

To study the period doubling sequence and the
possibility of chaos, computations were performed using
CHAOS near the point where the change in stability
occurs for the global periodic branch (from label 5).
These computations were performed for the same values
of parameters, except v, was set at 0.1 to get closer to the
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region where the Bogdanov Takens bifurcation occurs.
At v, = 0.3589, one stable periodic orbit is seen , which
goes through a period doubling bifurcation at v, = 0.35882
(Fig. (9a & b)). These periodic branches go through &
cascade of period doubling bifurcation sequences, and
finally become chaotic at u, = 0.35875 (Fig. 9¢ & ). This
chaotic behavior quickly changes into a regular two
period orbit structure, which also goes through period
doubling sequence and leads to another chaotic attractor
(at v, =0.35855).

Now, in order to study the bifurcation behavior near
{0, +1, -i} singularity, we fix B, v,, X and gb at - 0.1, - 0.3,
0.1 and 0.5 respectively, while fixing ¢z and ds at 1.0. As
noted in the previous section, this singularity occurs at
Wy = - 0.175, v, = 0.455). In this case (Fig. (10)), the
steady state bifurcation behavior is similar to what had
been observed earlier, but the nature of the periadic
solutions which result due {0 secondary hopf bifurcation,
is different. Both the periodic branches (through labels 4
and 6) lose their stability after going through a period
doubling bifurcation. Figure (1la-e) shows the phase
portraits near the v, values where the period doubling
sequence occurs, and finally the flow becomes chaotic at
v, =-0.352.

To conclude, the numerical results confirm the rich
variety of local bifurcation behavior observed
analytically. Codimension 1 and codimension 2
bifurcation varieties are observed in numerical
simulations. In addition the numerical simulation
exhibits breaking of the homoclinic orbits, change in
stabilities, rich periodic behavior and the period
doubling cascade leading to chaos. These bifurcation
diagrams give & clue to study the global bifurcation
behavior that is associated with the Bogdanov-Takens
and (0, +i, -i) bifurcation varieties, which were described
in the previous section.

8. CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH

In this study, we analyze the stability and
bifurcation behavior of a parametrically excited, four
dimensional nonlinear system under the combined
conditions of one to one internal and subharmonic
parametric resonance. The stability properties of the
trivial and non-trivial solutions of the 5-parameter
family of normal form equations were investigated and
various codimension 1, 2 and 3 bifurcation varieties were




located. The reduced fourth order system may have 2, 1
or 0 non-trivial equilibrium solutions depending upon
the parameter values. These st.éady state solutions
extend to the periodic orbits which are the relative
equilibria of the original four dimensional normal form.
The global bifurcation behavior associated with double
zero and (0, +i, -i} eigenvalues is also investigated and it
matches identically with the numerical results. The
complete analysis of the global bifurcation behavior for
this system is currently in progress. The numerical
results indicate homoclinic bifurcation along with an
interesting sequence of period doubling bifurcation
which leads to chaotic behavior. These issues also need
further investigation.
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Fig. 1: Stability boundary for the trivial solution (for

=-0.5,4 =0.1 and gb = 0.5). The shaded part

indicates the stable region. , J and €3 indicate

the simple, Hopf and Bogdanov Takens
bifurcation varieties respectively.
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Fig. 3: Graph of fip) vs. p. Various possibilities are
shown for the existence of non-trivial
equilibrium solutions of r for the nondegenerate
case(ie,a>0) (1.b<0,c>0,D>0, (2).b<0,
€<0, (3.b>0,c<0, 4).b<0,c>0,D<0.

(The dot indicates the possible non-trivial steady
state solution.)
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Existence of the non-trivial steady state solutions
forf=- 0.5,1:0.1,@:0.58!!(’(3)02 =1,do=1.
(b) e2 = - 1., dg = 1., The number inside the small
ellipse indicates the possible number of non-

trivial equilibrium solutions that may exist in
that region.
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Fig. 41 Curve showing various branches of the non-
trivial equilibrium solution for different
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Fig. 6: Stability boundary for the trivial solution for
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as f—0.




16 s 9%
0.5 /Y u ® o°
1 e 3 e ‘
. / -
. . D - S G 'Y S
N -’
7 <28 o

0.5 4 !

2% -\ ",."

1. T T 1 1 1

1.% 1.0 -5 0.0 0.% 1.0 1.5

Fig. 7. Response y; as a function of vg; 8 =-0.5,2 = 0.1,
gb=0.5,0,=00.

(a)

00 J

[ % {

Yt e

.10

“.»

n

Fig. 8: Phase plane trajectories (x}- y3) for the selected
orbits of Fig. 6. The labels in this diagram
correspond to their respective positions in the
bifurcation diagram (Fig. 6).

N om

-.»

¢

¢

*»

..

N e

°rn

(5

R X ]

-.»

.

4
;
T ¥ R T L T
LV SN Y R Y ST RS TS Y
i3
(c)
- 17
1 L ] v L) . 1§
x ] - - =48 - [ % ] L X ] «n 2.8
h 3%
] @
¥ Lo i ] L] Ll L L 4
[T BEEEY SERY YNV I T YT NS B Y
n

Fig. 8: Contd...




0.4f

0.2r

-0.4

()

-0.4

02

-0.2

)

o" -y T v v o.‘ L B T T 9
() (v)
0.2} T 0.2} 4
0.0 1 > 0.0} 1 =
-0.2} 1 =22} 4
-0.4 Nt TP BN ~-0.4 L PP TSN
-0.4 -02 0.0 0.2 0.4 -0.4 =02 0.0 0.2 0.4
X,
0.4 T T g 0.4 v T T .
(@ (e} ‘
0.2+ 7 0.2} 4
0.0 1 = 0.0 1
-0.2}¢ ~0.2+ 1
-0.4 . 2 . 1 — ) -0.4 N 1 31
-04 -02 0.0 0.2 0.4 -04 -02 00 0.2 0.4
1 Xy
0.4 L) L g LE o
K
@ 048
0.2¢ L 0.2}
00 A = 0.0
-02} ] 0.2}
_0-4 N A L A - i
-0.4 a2
-04 -0.2 0.0 0.2 0.4 0*0.‘ -0
Xy

2 0.0

0.2

X,

Fig. 9: Phase plane trajectories (x;- y1) for various values of vp; P =-0.5,2=0.1,
gb = 0.5, v; = 0.1, (a) vz = 0.3589, (b)vy = 0.35882, (c)vz = 0.3588,
(d) vz = 0.358785, (e) vz =0.35875, (f) Same as (e)but in (x2- y) - y2) plane,
(g) vz = 0.3586, (h)vg =0.35855

0.4

v




N

x:

°o.X

o.%

0.2

0.2

(a)
%29
=T T T T T
0,30 0.3% |9 - 0.3 0,400 0.45
he}
(b)
Z
9008000060000, 2
coo s
4 oooooooooo&-’&!&h{oo-.........,...'.'
90000000 gag, 10
Sese
4550000200020 52 828900000 sessservevreve
T T T T Y
0.3540 ©.355 0.3%0 0.3570 0. 50 0.35%
Y

Fig_10: (a). Response y1 as a function of vg; p =- 0.1,

A=01gb=05,vu;=-03. (b) Same as (a) but
near the parameter region where the period
doubling occurs.

¥

Yt

Y

Fig. 11;

0.25[ 7 T
(o)
0.20} 1

0.15f :
0.10} /
0.05} >

G.00t1 1

-0.050.
0.10

0.15

0.25 ST T T
(®

0.20

0.15

0.10

0.05

0.00

-0.05 —
0.10

0.18 0.20 0.25

Xy

0_25 T Y T T v~

0.20

“r
'l

0.15} ]
0.10} 3
0.05} ]

0.00t ]

|
-0-05 RPN §
0.05 0.10

rom | P |

0.15 0.20 025 0.30
xl

Phase plane trajectories (x; - y;) for various
values of vz for the upper periodic branch of
Fig. 10. (8 = -0.1,A = 0.1, gb = 0.5 vy =-0.3),
(a) v2 = 0.357, (b) vz = 0.355, (c)vg = 0.353,

(d) v2 = 0.352, (¢) Same as (d)but in (y1 - y2- x2)
plane.




P
i [~
0.25 ¥ r v T
) (9)
0.20}
H 0.15| 1
H;
| = 0.0}
[ 00sf ]
0.00F .
3 -0.05 Loy i ad 2
| 0.05 0.0 0.15 0.2C 0.25 0.30
H Ay
I
i
Fig. 11: Centd...




Robustness of Nonlinear Systems
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The effect of external random excitation on nonlinear continuous time systems is

examined using the concept of the Lyapunov exponent. The Lyapunov exponent
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may be regarded as the nonlinear/stochastic analog of the poles of a linear deter-
ministic system. 11 is shown that while the stationary probability density function
of the response undergoes qualitative changes {bifurcations) as system parameters
are varied, these bifurcations are not reflected by changes in the sign of the Lyapunov

exponent. This finding does not support recent proposals that the L yapunov exponent
be used as a basis for a rigorous theory of stochastic bifurcation.

Introduction

The design of practical control systems requires that the
mathematical model used be sufficiently robust. This implies
that qualitative properties should be preserved under the effect
of all possible perturbations. Such systems were referred to by
Andronov, Vitt, and Chaikin (1965) as *‘coarse systems’’ and
formed the basis for the concept of structural stability in the
mathematical theory of dynamical systems (Arnold, 1983). In
the context of single-input single o-iput (SISO} linear control
svstems, robustness is characterized by the Nyquist plot and
the concepts of phase and gain margins. The extension of these
ideas 1o multiple-input multipie-out (MIMO) linear systems is
documented by Dorato (1987). Currently, there are two major
approaches 1o robustness analysis. The first assumes unstruc-
tured additive or multiplicative perturbations of the plant
transfer function. Robustness is then measured by the singular
values of the return difference matrix. This is a frequency
domain technique which does not make explicit use of the
nonlinearities present in the system. The second method is
referred to as a structured or parametric approach. The precise
values of system parameters are unknown but the uncertainty
is assumed to be bounded. The degree of robustness, indicated
by the system poles of the linearized system, is then deterimnined
in terms of these bounds using Kharitonov-type theorems (Bar-
mish, 1988). These two techniques constitute a deterministic
approach to the robustness analysis of linear systems. The
possibility of random parametric or external excitation is not
considered.
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So far the robustness analysis of stochastic sysiems has re-
cejved relatively limited attention. Wonham (1967) investigated
the problem of a linear continuous time system with linear
multiplicative white noise gain in terms of optimal stationary
control using a state space formulation. A similar problem
was studied by Willems and Blankenship (1971) in the fre-
quency domain (see also Willems and Willems, 1983). ..1 both
instances. robustness was measured by a mean-square type
criterion. Robustness measures of stable, linear discrete time
svstems were obtained by Yaz and Yildizbayrak (1985) and
Yaz (1988). Their robustness measures are based on the sample
stability of the perturbed sysiem. The references mentioned
above are mainly concerned with the effect of parametric fluc-
tuations/uncertainties on linear systems. For nonlinear sys-
tems, as systems parameters are varied, qualitative changes
(bifurcations) in the system response can occur. In this paper,
the robustness of such bifurcations under the effect of random
external excitation will be examined. In the following section,
the problem is formulated in a general context and the idea
of the Lyapunov exponent as a quantitative measure of ro-
bustness is introduced. Examples of systems undergoing co-
dimension | and 2 bifurcations are then studied.

Problem Formulation
Consider the following system:

B AX+f X+ o) )
where X is a vector in R” and without loss of generality it is
assumed that A is in canonical form, f{ X) are nonlinecar terms,
and n(f) represents independent zero-mean white noise exci-
tation of unit intensity. Since only additive noise is present, it
does not matter whether the 1tS or Stratonovich interpretation
is used. Assuming that a stationary solution X, exists, the
problem of robustness is concerned with the sampie stability
of this stationary solution. As with deterministic systems, con-
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sider a small perturbation x, about this stationary solution.
Then to first order in the perturbation, a finear system with
stochastic coefficients is obtained:

- IR
- [A +8X]x- {4+ F()]x. (2)

Define a norm p = (x'x}''%, the exponential growth rate of
the perturbation is then given by

d(logp) x"{(A+F(1)) + (A+F(1) Ix
dr 20! )

The Lyapunov exponent, A, is simply the time-averaged ex-
ponential growth rate defined by

A=lim —:— (log(f((—%)), {0 4)

a0\ _ S‘ YA+F(5)) + (A+F(s))x
) =

3)

where

ds.
B o @

The stationary solution is sample stable if A < 0, and this is
a necessary condition for a robust system. Assuming that the
stationary state is also ergodic, the temporal average may be
replaced by the ensemble average and a quantitative measure
for robustness can then be computed, i.e.,

[x’l(A +F(0)+ (A +F(e))'1x]
A=E 37 .

One may regard the Lyapunov exponent as the stochastic an-
alog of the poles of a deterministic system. This concept of
the Lyapunov exponent (Bylov et al., 1966) has been proposed
by L. Arnold (1988) as a basis for a rigorous theory of sto-
chastic bifurcation. A similar approach was also used by
Caughey and Gray (1965), Infante (1968), Kozin and Wu (1973),
and Ariaratnam and Xie (1988a) in their derivation of sufficient
conditions for the sample stability of linear systems with sto-
chastic coefficients.

(5)

One-Dimensional Systems

For one-dimensional systems, the computation of the Lya-
punov exponent is fairly simple. Consider the general one-
dimensional system written as

dax

-&-"=XX+I(X)+0*)(‘). (6
and the perturbed system is

ax [, dfix,)

o [)& ax ]x. N

If the stationary state is ergodic, then the Lyapunov exponent
is given by

df(X,)] -

A=X+E[—d}—'

and the stationary probability density function can be obtained
by solving the Fokker-Planck equation (FPE) for the system

.2 <
0= -~ {menpm -33 X}. ©)

The stationary probability density function (pdf) is given by
p) xZ X
ps(X) =Nexp(? (X 3t S f(Z)dz))

where N is an appropriate normalization constant. It is in-
structive to consider a simple example:

Example | (Simple Bifurcation—Soft Loss of Stability).
For a symmetric system undergoing a soft loss of stability (i.e.,

(10)
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Fig. 1 Lyspunov exponent (soft ioss of stability)
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Fig. 28 Probability density funclion (soft loss of stadility), A = - 0.2

Alx)

£

-2 -1 R z
Fig. 2(b} Probability density tunction (soft loss of stability), A = 0.2

a loss of stability to a nearby equilibrium, f(X) = aX ' with
a < 0) and the stationary probability density function is

pi(X)=exp (;22 X2+ aX‘/d)) /

5 exp (55 X372+ aX‘/d)) ax. (N

Assuming that the stationary solution is ergodic, the Lya-
punov exponent is then given by Eq. (8):

A=X+3eELX?. (2

The Lyapunov exponent A is plotted against the eigenvalue
A for the deterministic system in Fig. 1 with ¢° = 0.1 and @
= - L. The deterministic system undergoes a bifurcation at A
= 0 and the probability density function changes from a un-
imodal density to a bimodal density (Fig. 2(a) and 2(b)). As
evident from Fig. 1, the Lyapunov exponent A is negative which
indicates that this is a robust feature, but the system is least
robust at X = 0. Physically, this implies that perturbations
will take a much longer time to decay. It should be noted that
the Lyapunov exponent does not indicate the qualitative change
in the stationary pdf. This point was not adequately empﬁﬂ'
sized by L. Arnold (1988) in his theory of stochastic bifurcation
based on the Lyapunov exponent.
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Example 2 (Simple Bifurcation—Hard Loss of Stability).
Now consider the one-dimensional system

%=xx+cy‘r"+csx’+an(r) 13)

where Cy > 0, Ce < 0 for a hard loss of stability. The steady-
state pdf is given by

20X xt X
Ps(X)=Nexpl; ()\—2'+C3T+C5—6‘)} a4)

where the normalization constant N is defined by

= 2 [ X? X! X
N:Swexp[? ()\—2‘-+C37+C,~6—‘)]d)( (15)
and the Lyapunov exponent is {(from Eq. (8))

A=A+ 3GEIX?]) + SCEXY (16)
where the expectation is taken with respect to the steady-state
pdf defined by Eq. (14). Numerical results for C; = 2, G5 =
-1and ¢ = 1 are shown as Fig. 3. In this case, the system

is teast robust just before the deterministic bifurcation point
at A = 0. It is interesting 1o compare this resuit with the
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X

-4 -2 2 \ a
Fig. § Lyapunov axponent for dX = (1 + AX = X3at + V2XodW

qualitative changes in the pdf as \ is varied (Fig. 4). It can be
seen that the decrease in robustness coincides with the emerg-
ence of two additional peaks in the pdf. Once again, it should
be noted that the Lyapunov exponent remains negative and
cannot be used as a bifurcation parameter.

The results derived here for nonlinear systems under external
random excitation is by no means typical. In fact, parametically
excited systems studied by previous researchers in stochastic
bifurcation theory are extremely sensitive to errors in the ref-
erence input. Consider the nonlinear system with fluctuating
gain:

dX=(X-X%di+V2X0dW, amn

where ** 0 denotes that the Stratonovich interpretation is
used. It is well known that the Lyapunov exponent is simply
A and the trivial solution X = 0 loses its stability at A = 0
and this coincides with a qualitative change in the probability
density function. Suppose now that a nonzero reference input
is present, i.e.,

dX=(1+XX-X*)di+J2X o dW. as)

Since the drift term is not zero at X = 0, the system is ergodic
and a steady-state solution exists and is defined by the steady-
state pdf:

X lexpl - (17X + X220/ C X>0
ps(x) = I (19)
0 else

where
C= 5 X lexpl - (17X + X3/ 2))dx,
0

Perturbing about this stationary {(ergodic) solution leads to
the following linear system with stochastic coefficients:

dx= [\~ 3(X;)*)xdl + \2xodW. (20)
The Lyapunov exponent is then given by
1 Ix(0)|
A-lh_n:'log 0! =A-3E1XY @1

since the Wiener process W(1) ~ (7ioglogr)'?as ¢ — o with
probability one. The Lyapunov exponent Eq. (21) is plotted
in Fig. 5 and is negative. The variation of the Lyapunov ex-
ponent with A is not unlike that of a system perturbed by
external random excitation. This ‘‘quasi-external excitation"
effect of a nonzero reference input is apparent if the trans-
formation X = Y + Cis made in Eq. (18) 5o that the nonzero
reference input is eliminated. One sees that an additional ex-
ternal excitation term (CdW ) is then generated from the mui-
tiplicative noise term XodW.

Two-Dimensional Systems

Noting that the problem of robustness leads to a linear
system with stochastic coefficients, it is convenient to first
consider the general two-dimensional linear system with sto-
chastic coefficients:
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dx,
_d_t£=Fu(')Xl+Fﬂ(')x1
22)

dx. .
7:‘31"21 (Ox;+ Fya()x,

where the F, (1) are colored noise sources generated from white
noise. Making the transformation, x, = rcosd, x; = r sind,

dr 1 .
7:=5 ((Fu + Fi) + (Fia + Fay)sin28 + (Fyy — Fy)eos28)r

» 1 ,

@2 {(Fy = Fi2) + (Fyy— F\,)sin20 + (F3, + Fi3)cos26]  (23)

If the @ process and the F;(1)'s are ergodic then the Lyapunov
exponent is given by

1
A=3 EY(Fu+Fa) + A (Fia+ Fa) + (Fuy— Fu)sin(8 + ¢))

24
where ¢ is a random phase angle defined by
Fy—Fn
=arctan| ——=].
¢ (F 2+ le) @3)

Noting that lsin(20+¢)! =< 1, an upper bound for the Lya-
punov exponent can be found and hence a sufficient condition
for sample stability is:

EU(Fi+ Fp) +N (Fiz+ Fu)?+ (Fu-Fn)ll<0.  (26)
A necessary condition for sample stability requires that the
joint moment of the stochastic coefficients and the phase proc-
ess 6 be computed. These ideas are applicable to the following
system:

Example 3: Hop! Bifurcation (Dynamic Instability).
Consider the nontinear system perturbed by independent ex-
ternal white noise sources:

%=“X""Y+ (@X - (X2 + Y ) +om (1)

dy
dt

where the deterministic terms correspond to the normal form
for the Hopf bifurcation. A stationary state exists for the case
a < 0, and the pdf is given by

2 X2 Yz 2 YZ
p,(x.n=~exp[;(u‘ 1), ’1)] @8)

and

el Ll (5

2 2
+a L&i!).’) ] dxXdyY. (29)

=X +pY+ (@Y+bX) (X + Y +aom() @27

4

Perturbing about this stationary state, the resulting linear sys-
tem, Eq. (22), is defined by x; = x, x; = y and

Fu=p+a(3X*+ Y?) -2bXY

Fiz= ~w—-b(X*+3Y%) + 2aXY

Fa=w+b(3X*+ Y} +2aXY

Fa=p+a(X*+3Y%) +2bXY (30)
which leads to
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dr 1. vl
d‘=]p+2a(x +Y%)

+ @+ B~ Yhysing - 2XYeosy 1/ 31

a9 : :
Z=“,.,.2g,(x1.|. Y+ @+ BUX - ¥cosy + 2X Ysing)

where ¥ = 20 + arctan(arb). Since w is nonzero and the x
Y processes are assumed to be ergodic, the Lyapunov exponent
is then given by

A=Elp+2(X*+Y?)
+N @+ 81X - Yisiny - 2XVeosy)] (32

where the expectation is taken with respect (o the steady-sage
joint probability density function p,(X, Y. 6). A perturbation
expansion for this steady-state pdf may be constructed using
a separation of time scales technigue given in Blankenship and
Papanicoloau (1978). Roughly, since the X, Y processes are
assumed to be stationary to start with, these processes mus
have evolved sufficiently fast to reach a stationary state and
should be scaled accordingly for consistency. The technique
has also been applied by Horsthemke and Lefever (1984) and
is explained in Appendix A. Then the Lyapunov exponent can
be computed term-wise from such an expansion has been prosen
by Arnold et al. (1988). For simplicity, the technigue wil} be
applied for the case b = 0 and the angular frequency w is
large. The system defining the steady-state pdf is scaled a
follows:

»
—t=§-§ [(X?~ Y?)5in26 - 2X Ycos26)
dx 1
e WX -wY+aX (X + Y+ ()
dt € €
Ay X—pYrar(X2e ¥ +9ny OB
dr ¢ €
Let the steady-state pdf take the following form:
PAX, Y, 0=po(X, Y, O+ep (X, Y.+ ... (3

The steady-state Fokker-Planck Equation for Eq. (33) may be
written as

1 !
;:Lo(p,l-#; Lilp =0, (%)

where the operators L, and L, are defined as follows:
.9 1, yoyg, L 0P
Lolpl = X ([pX—wY+aX(X +Yhp-3 o3

a2 2 ) G:QE_ _ ,‘2
~37 ((ux+uY+aY(X +Y)p- 3 ay’) )

Llpl= -a% [((X?~ Y?)sin26 - 2X Ycos28)p). 6

Substituting Eq. (34) for the pdf leads to the system of
equations:

Lolpol =0
Lolpy} = L 1po]

a0

Lolp,) = Lilpa ). N

The solution to the lowest order equation is
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Pl X, Y, 0)=p(X, Y)p,(8)
2 { (x'+¥) (xXP+¥Y)? LI
- — 8
-Nexp[; (u +a e (38)

2 4

and an approximation to the Lyapunov exponent is then ob-
tained from Eq. (32) by taking expectation with respect to Eq.
(38)t

A=pu+2EX}+ YY) (39)

This is compared in Fig. 6 with the sufficient condition o!g—
tained from Eg. {26), which states that the system is robust if

u+Qa+ lal)ElX?+ Y <0. (40)

Fora = ~0.5 and ¢ = 1, the sufficient condition Eq. (40)
is satisfied. This indicates that the system is robust but as
expected, it provides a more conservative robustness measure
compared to Eq. (39).

One may also check if the polar representation of the Hopf
bifurcation, Eq. (27), is robust to external excitation. Consider

qd—k;'=pR+GR3+0m(l). a<0, R20

%—,f=w+bkz+anz(1) (1))

where the noise terms are included for the robustness analysis
and, for purposes of comparison, b will be set to zero. Ob-
serving that the amplitude R is decoupled from the phase, the
Lyapunov exponent is then given by

A=y +3aE[RY, 42)

where the expectation is taken with respect to the probability
density function

2 R 1
Ps(R, 0)—Nexp( o (uR /2+aR‘/4)) =
and

Ntz 5 exp (:—, (uR?/2 + aR‘/4)) dR. 43)
0

The Lyapunov exponent, Eq. (42), is also plotted against x in
Fig. 6 for the same parameters, i.e., o = landa = -0.5.
1t 15 evident that the polar representation is less robust to
external random excitation. Physically, in Eq. (41), the per-
turbations are aligned with the radial direction and hence the
perturbations should have a greater effect on the amplitude.

Example 4 (Hopf-Pitchfork Interaction—Coupled Dy-
namic/Static Instability). Consider the deterministic normal
form for the Hopf-pitchfork bifurcation perturbed by external
independent white noise sources:

§=MR +c’R+e'RZ + o (1)

%:)\Z+ b'Z2+d RZ + oy (1), (44)
where R represents the dynamic mode (R > 0), and Z, the
static mode. Based on Example 3, the polar representation is
used since from a robustness viewpoint, this corresponds to a
‘‘worst-case’” situation. It is convenient to rescale the state
variables by

R—\2R/0,, Z—\22/0,
resulting in
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Fig. 8 Lyspunov exponent (Hopf bifurcation) {1) upper bound—non-
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%=,¢R+CR’+¢RZ’+\/EI|.(I)

%%:xz»r b2+ dRZ + a0, “5)

where the new system parameters are given by
b=b'(0)2/2, c=c'(0,)/2, d=d’ (0,)’/2, e= e’ (0;)’ /2.

An explicit normalizable solution to the steady-state FPE
for Eq. (45) can be found for the case d = e = &, provided
b,c < 0andif k > 0, then bc - k* > O must also be satisfied.
The steady-state probability density function is then

PR, 2) =Nexp(i (Qu+cR*)R* + 2kR*Z} + (D + bz’)z’).

(46)

with N as a normalization constant. Perturbing about this
stationary state and to first order in the perturbation,

g-:a (u+3cR* + kZ')r + (KRZ)z

dr_
dt
Using the formula derived earlier, Eqs. (22)-(23), and letting

r = pcosd, 2 = psind, the growth rate of the norm of the
perturbation, p, is governed by

(2KkRZ)r+ (A + 3022+ kR 2 "N

5?:%[(k+u)+(3c+k)R’+(3b+k)Z’+4kRZsin20

+{(u~-N+Gc—Kk)R + (k—3b)Z')c0s26)p. (48)
Scaling the 8, R, Z processes as in Appendix A yields
H

» . )
a2 (A — p)sin26 + % {4kRZcos26

+[(3b-k)Z* + (k- 3c)R*}sin28)
dR 1 ]
2= 3 R+ R+ ARZ) 4 V2 (0
%% =:', (O\Z + b2’ + kR*Z) +f V2n0). (49)

For simplicity, let & = 35 = 3c. The steady-state FPE is
given by )

i 1
3 Lolpl = Lilp) - Lalp] =0, (s0)

with Lo, L,, L; defined by
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&
Lqolp)= ~5‘-’§ {(,‘m; R’+kRZ’)p—%}

(/4 5 p
~3z {(XZ+ 2°+kZR )p—aZ}

L,[p]=2kRZ -?- [pcos26)
- u) 3

Lo} = 29 LPsin26].

Let the perturbation expansion be of the form
ps(R' 2! 0)=p0(Rv zr 0)"' fpl (R- z- a)
+€pAR, Z, D *..., (51)

and the system of perturbation equation is

Lolpo] =0
Lolpl = Lylpo}
Lolpa) = Li{p:) + Lalpo}

Loipa) = Litpa 1) + Lalpn - 2). (52)

It is convenient to let p,(R, Z, 8) = pA(R, Z)r,(r, Z, 0),

where p(R, 2) is defined in Eq. (46), so that the operator
Lo[p.] takes the form

ar, a ar,
Lolpa) = Lolpsral = R [p, aRl [ az] (53)

which is a linear self-adjoint operator. Substituting into the
FPE, Eq. (5) and collecting terms, the O(¢®) equation is trivally
satisfied with py(R, Z, 0) = p,(R, Z)ro(O) but unhkeExample
3, rf0) has yet to be defined. The O(e') equauon is

Lylpil = Lilpro(0))=2kRZp(R, Z) —--ro(v)cosZO (54)
According to the solvability condition,

5:' 5: j: 2URZp.(R, Z) :—0=’o(0)cosza

x p(R, Z)N(0)dZdRd# =0

where the term p,(R, Z)N(8) belongs to the kernel of L,.
Since this has to hold for an arbitrary N(8), it is required that

g f 2kRZp3 (R, Z)dZdR =0. (55)
(] -

As p,(R, Z)is symmetric in Z, this implies that Fredholm’s
alternative is satisfied and that a unique solution for r, can be
found. Using the fact that L, is a linear operator, 7, can then
be expressed as the sum of a homogencous and particular
solution

r(R, Z, 0= H(0)+2k- ro(f)cos20P(R, Z), (56)

where H(0) is the homogeneous solution of Lo{p,H(8)] = 0
and P(R, Z) is a pamcular solution of LolpP(R, Z)} =
RZp,(R, Z). 1t remains now to solve for P(R, Z). Using
Galerkin's approximation, let P = £C,,,R™Z" and take weight
functions of the form R*Z°. Define

M(m, n)as K R™2'p,(R, Z)dZdR. N
0 -

A simple }-mode expansion, P(R, Z) = CxpR* + CRZ

+ CnZ’, yields
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2. 2)
MO, 3+ M2 0 4 (s8)

P(R, Z) = -
Now, at O(®):

Lolpysi)= ZkRZ — (n(R Z, 6)x0s28} + —--5—— — [fg(G)sm’e;
(59)

Substituting for (R, Z, 6) and invoking Fredholm’s alte;.
native, ry(8) has to satisfy

a X 3
5 {ZCro(G)sm20+c0520 56 [n,(ﬂ)cmla)g =0, (60}

with C = (A - w)/(V6ICEIRZP(R, 2)), where the expectation
is taken with respect to p,(R, 2). This cquation may be re.
written as

F] | ¥
~ % { [Csm20+- sxnw]ro} 33 {rcos’201 =0, (61}
which takes the form of a steady-state Fokker-Planck equation
with drift and diffusion defined, respectively, by

2

The process evolves on the half circle ¢ € [0, x] with sin-
gularities at 8§ = x/4 and 3x/4. As C # 0, the drift at the
singular points is not zero and thus the singular points can be
classified as left and right shunts depending on the sign of the
drift term. The boundary point classification is performed
using the Feller classification scheme (1954). It is shown in
Appendix B that the boundary points § = 0, x are both per-
fectly reflecting regular points. Therefore, the 8 process is
ergodic and the Lyapunov exponent can be found using Eq.
(24) to be

)= — [Csinzt?-frl sian and ¥'(9) =cos’28. (62

)\+uu)\
2

Now consider the case C > 0, (similar results can be derived
for C < 0). The singular points are given as left and right
shunts for § = =/4 and 3x/4, respectively. That a aontrivial
normalizable solution for ry exists on the intervals, (0, x/4)
and (3x/4, x) is shown in Appendix B. 7 is given by:

C >0

A= ETcos28] + k (E{R"] + E1Z%)). (63)

N
et A e et 05051’/'4 or 31/4585'
ro(8) = exp(C/cos26)cos2
0 else

(64

where Nis a normalization constant. The Lyapunov exponent,
Eq. (63), is plotted against » (where A = vand p = » + 1
in Fig. 7 for k = - 1. The deterministic system undergoes
primary bifurcations at » = Qand - 1. A secondary bifurcation
occurs at ¥ = 0.5. It can be seen that these features are robust
(i.e., the Lyapunov exponent remains negative) and a decrease
in robustness coincides with the occurrence of the first prir €y

-2.6

-2.8

Fig. T Lyapunov exponent (Hopt-pitchiork bifurcation)
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bifurcation. Once again. the Lyapunov exponent does not re-
flect the qualitative chunges in the pdf but does indicate when
nonlinear effects become significant.

Conclusion

The major conclusions of this investigation are as follows:
1 While the Lyapunov exponent provides a robustness meas-
ure for the combined effects of nonlinearities and noise, it is
not a suitable bifurcation parameter for nonlinear stochastic
systems in the sense that it does not reflect the qualitative
changes in the steady-siate probability density function. This
occurs whenever X = 0 js nof a solution of the nonlinear
stochastic system. Examples of nonlinear systems under ex-
ternal (additive) random excitation and systems under para-
metric random excitation (multiplicative noise) with a nonzero
reference input were shown 10 possess negative Lyapunov ex-
ponents.
2 The results of this investigation suggest that the extremum
of the Lyapunov exponent (with respect to the bifurcation
parameter for the deterministic system) provides an indication
of when nonlinear effects become important. For the one and
two-dimensional systems perturbed by external random exci-
tation, it was observed that this extremmum follows the occur-
rence of the first bifurcation in the corresponding deterministic
system [t is left as a conjecture that this is a general char-
acteristic of nonlinear systems perturbed by external random
excitation.

Acknowledgment

This research was partially supported by the NSF through
Grant 90-57437 PY1 which is monitored by Dr. Devendra Garg
and AFOSR through Grant 91-0041 which is monitored by Dr.
Spencer Wu.

References

Andronov, A. A, Vitt, A. A, and Khaikin, S. E., 1966, Theory of Oscillatars,
Pergamon Press, London

Arnold, L.. 1988, “Lyapunov Exponent of Nonlinear Stochastic Systems,*’
Nonhnear Stockastic Dynomic Engineering Systems, F. Zieglet, and G. 1.
Schuelier, e, Springer-Verlag, New York.

Arnoid, L., Papanic-‘aou, G, and Wihstuiz, V., 1986, **Asymptotic Analysis
of the Lyapuno aent and Rotanon Number of the Random Oscillator and
Apphcations,”” 514M Journd! of Applied Maikematics, Yc). 46, No. 3, pp.
427-450.

Arnold, V., 1983, Geometrical Methads in the Theary of Ordinary Differential
Equanions, Springer-Verlag, New York.

Ariaratnam. S. ¥ , and Xie, W. C., 19882, “*Stochastic Stability of Osciliatory
Svsiems,”” ASME JOur~aL OF AppLIED MECHANICS, Vol. 55, pp. 458-488.

Ariaratnam, S. T., and Xie, W. C., 1988b, “Dynamic Snap-Buckling of
Suructures under Stochastiv Loads,” Stochastic Structural Dynamics: Progress
n Theoryand Applications, S. T. Ariaratnam, G. |. Schueller, and I, Elishakoff,
«ds., Elsevier, New York.

Barnish, B. R_, 1988, *‘New Tools for Robustness Analysis,”” IEEE Pro-
ccedings of the 27th Conference on Decision and Control, pp. 1-6,

Blankenship, G., and Papamcelavu, G. C.. 1978, “Suability and Control of
Stachastic Systems with Wide-Band Noise Disturbances: 1" SIAM Journa!
ot Apphed Mathemarics, Vol. 34, No. 3, pp. 437-476.

Byvlov, B. F., Vinograd, R. E., Girobman, D. M, and Nemytski, V. V., 1966,
Theory of I vapunov Exponenis, NAUKA, Moscow.

Caughey, T. K., and Gray, A. H., Jr., 1965, “'On the Almost-Sure Stability
of Linear Dynamics Systems with Stochastic Coefficients,”” ASME JournaL of
APPLIED MECHANICS, Vol 32, pp. 365-372.

Dorato, P., 1987, *‘A Hisiorical Review of Robust Control,' JEEE Conirol
Svsterns Magazine, Apr., pp. 44-47.

Feller, W, 1954, “'Diftusion Process in One Dimension,”* Trans. of Amer.
Muth Saociery, Vol. 97, pp. 1-31.

Horsthemke, W', and Lefever, R., 1984, Nouse-Induced Tronsitions, Springer-
Veriag, New York.

Infante. E. F.. 1968, *On the Stability of Some Line.s Nonautonomous
Random Systems.” ASME Joua~aL OF APPLIED MECRANICS, Vol. 35, pp. 7-
12,

Kozin, F., and Wy, C. M., 1973, “On the Stability of Linear Stochastic
[hiferential Equations,”” ASME journar oF ApeLiED Mecramcs, Vol. 40, pp.
R7-92.

Tain, Y. K., 1986, Probabihistic Theory of Struciural Dynamics, R. Kricger,
VL.

Journal of Applied Mechanics

Nishioka, K.. 1976, "'On the Stability of Two-Dimensional Linear Stochastic
Systems.”’ Kodai Mathematics Semunar Report, Vol. 27, pp. 211-230

Willems, J. C., and Blankenship, G. C., 1971, *"Frequency Domain Stability
Criteria for Stochastic Sysiems,”” JEEE Transoctions on Automatc Control,
Vol 16, pp 292-299.

Willems, J. L., and Willems, J. C., 1983, “*Robust Stabilization of Uncertain
Systems,”” SIAM Journal of Control and Optimization, Yol. 21, pp. 352-374.

Wonham, W. H., 1967, ““Optimal Stationary Control of a Linear System with
State Dependent Noise,” SIAM Journal of Control, Vol. S, pp. 486-500.

Yaz, E., 1988, **Deterministic and Stochastic Robusiness Measures for Dis-
crete Sysiems,” JEEE Transactions on Automatic Control, Vol. 33, pp. 952-
9558.

Yaz, E., and Yildizbayrak, N., 1985, **Robustness of Feedback-Stabilized
Systems in the Presence of Non-linear and Random Perturbations,”” /nterna-
tional Journal of Control, Vol. 41, pp. 345-383.

APPENDIX A

The scaling employed is adapted from Horsthemke and Le-
fever (1984) and may be justified as follows:
1 The X and Y processes are assumed from the stan to be
stationary (ergodic) processes. This stationary state is achieved
only in the limit 1 —~ o, Hence, in the It6 representation of
the X and Y processes, time is scaled as # — /¢* 5o that the
stationary state is reached in the limit ¢ — 0.
2 Now consider the effect of such a scaled process Z(#) =
X(t/€) in the 6 equation. For example,

dé=f(0)dt+ Z{1)g(6)dr. (65)
The spectrum of Z(f) = X(1/¢%) is given by

l o«
Sz(w) =i; S EXZ(1)Z(t+ 1)]exp{ — jwr)dr

=El; S EIX(/E) X (1/6* + 1/6'))exp( - jwr)dr

2

=5
T2x

5 EIX(t/&)X (176 + 5))

X exp{— jczus)ds( let s= r/e’)
=Sy () (66)

which tends to zero as ¢ — 0. This implies that by simply
scaling time alone, one will obtain a noiseless limit. Hence,
the amplitude of the process X(/¢%) should be multiiplied by
a factor of 1/¢ to ensure that noise effects are not excluded in
the limit.

APPENDIX B

The ergodic assumption is shown to be valid by considering
the properties of the sample paths of the & process on the unit
half circle. The drift and diffusion are, respectively,

()= - [Csin28+% sin40] and ¥(@)=cos®28. (67)

Take C > 0, and by symmetry it 1s only necessary to study
the process on (0, »/4). The diffusion is singular at 8§ = »/4
with &(x/4) = —C < 0, yielding 8 = x/4 as a left shunt.
In order to complete the proof of ergodicity, the behavior
at = 0 must be known. To this end, we introduce scale and
speed measures defined, respectively, as
! ]

]
3(0)=S s(x)dx, M(O)*S m(x)dx (68)

where
i
= Exp[ - B(x)], =
s{x)=Expl-8(x)], m(x) m
"2
am-j ;%("!')ldq )
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s(x) and m(x) are called the scale and speed densities. The
scale and speed measures are found to be

Cc ' [of
¢ Exp [ coqu] ) EXP[ coszq]

= 5 icos2yl Icos2g|

dn, M@)= s dn.

(70

Again, only consider C > 0 and 8 ¢ [0, x/4). Both functions
are bounded and continuous on 8 € [0, x/4) and as such the
integrals on this region are also bounded. Thus, 8§ = O is a
regular point.

The property of pure reflection can be determined from a
physical argument. It is clear that unless the coupling coeffi-
cients are both zero, it is not possible to have a solution with
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z2(¢) = 0. Since & = Q implies ¢ = 0. there can be ng accy.
mulation of probability mass at the point.

As 8 = 0 is purely reflecting and 6 = x4 is a left shyp,
the region (0, x/4) has the property of recurrence or ergodicit;
and a unique, normalizable stationary density exists on hjg
interval. Similar conclusions may be made for the interya)
(32/4, 7). Should @ start outside the intervals (0, x/4) ang
(3x/4, ¥), it can be shown (Nishoka, 1976) that the 8 process
moves into either one of the two intervals in finite time wigh
probability one. The temporal average can then be replaced
by the ensemble average computed with respect 10

N
c0s20ExplC/cos28]

where N is a normalization constant. Similar results can be
obtained for C < 0.

p(8) =Nm(8) = (1)
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